Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival.

Methods: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex.

Results: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss.

Conclusions: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nan.12935DOI Listing

Publication Analysis

Top Keywords

fgf9
10
fibroblast growth
8
growth factor
8
fgf1 fgf2
8
fgf2 fgf9
8
transcriptional profiling
8
profiling myelinating
8
myelinating cultures
8
effects fgf9
8
cortical neurons
8

Similar Publications

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Background: Tetrandrine (TET) demonstrates therapeutic potential for hypoxic pulmonary hypertension (HPH); however, its precise pharmacological mechanisms remain unclear. In this study, we aimed to investigate the effects of TET on pulmonary vascular remodeling (PVR) in HPH and elucidate the molecular pathways through which TET ameliorates HPH.

Methods: We established a rat model of HPH and evaluated the therapeutic effects of TET by measuring hemodynamic parameters, assessing right ventricular hypertrophy, and analyzing pathological changes in lung tissue.

View Article and Find Full Text PDF

FGF9-FGFR2 Signaling via Osteocytes-Preosteoblasts Crosstalks to Mediate Mechanotransduction-Driven Intramembranous Osteogenesis in the Underdeveloped Maxilla.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, 30 Zhongyang Road, Nanjing, Jiangsu, 210008, China.

Maxillary underdevelopment is a critical component of skeletal Class III malocclusion, closely linked to altered biomechanical signaling. Mechanical stimulation through early facemask protraction can effectively promote maxillary growth, yet the underlying mechanotransduction mechanisms remain unclear. In this study, fibroblast growth factor 9 (FGF9) is identified as a key biomechanical responder in maxillary development.

View Article and Find Full Text PDF

Recent advances in neural differentiation have unveiled new possibilities that could potentially be applied to the development of human-relevant non-animal models, for use in fields such as biomedical research and drug screening. Thus, the directed differentiation of tissue stem cells toward neural progenitor cells or neural stem cells, by small molecules and growth factors without the need for genetic manipulation, has attracted great attention. The generation of neural progenitor cells, and their proliferation and lineage commitment are regulated by signaling pathways activated by small molecules and growth factor families, including various fibroblast growth factors (FGFs).

View Article and Find Full Text PDF

FGF9 treatment reduces off-target chondrocytes from iPSC-derived kidney organoids.

NPJ Regen Med

August 2025

Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.

Renal failure due to drug nephrotoxicity or disease is frequently observed in patients. The development of in vitro models able to recapitulate kidney biology offers new possibilities to study drug toxicity or model diseases. Induced pluripotent stem cell-derived kidney organoids already show promise, but several drawbacks must be overcome to maintain them in culture, among which is the presence of non-renal cell populations such as cartilage.

View Article and Find Full Text PDF