98%
921
2 minutes
20
Background: Despite the expanding role of machine learning (ML) in health care and patient expectations for clinicians to understand ML-based tools, few for-credit curricula exist specifically for neurosurgical trainees to learn basic principles and implications of ML for medical research and clinical practice. We implemented a novel, remotely delivered curriculum designed to develop literacy in ML for neurosurgical trainees.
Methods: A 4-week pilot medical elective was designed specifically for trainees to build literacy in basic ML concepts. Qualitative feedback from interested and enrolled students was collected to assess students' and trainees' reactions, learning, and future application of course content.
Results: Despite 15 interested learners, only 3 medical students and 1 neurosurgical resident completed the course. Enrollment included students and trainees from 3 different institutions. All learners who completed the course found the lectures relevant to their future practice as clinicians and researchers and reported improved confidence in applying and understanding published literature applying ML techniques in health care. Barriers to ample enrollment and retention (e.g., balancing clinical responsibilities) were identified.
Conclusions: This pilot elective demonstrated the interest, value, and feasibility of a remote elective to establish ML literacy; however, feedback to increase accessibility and flexibility of the course encouraged our team to implement changes. Future elective iterations will have a semiannual, 2-week format, splitting lectures more clearly between theory (the method and its value) and application (coding instructions) and will make lectures open-source prerequisites to allow tailoring of student learning to their planned application of these methods in their practice and research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2023.09.012 | DOI Listing |
J Dent Educ
September 2025
Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.
Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.
Diagn Progn Res
September 2025
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause of morbidity and mortality among hospitalized adults. Numerous prognostic models have been developed to identify those patients with elevated risk of HA-VTE. None, however, has met the necessary criteria to guide clinical decision-making.
View Article and Find Full Text PDFAcad Radiol
September 2025
Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey (A.N.Ş.).
Anal Chim Acta
November 2025
Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, 38090, Pakistan. Electronic address:
Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China; Laboratory for Microwave Spatial Inte
Background: X-ray fluorescence (XRF) technology is a promising method for estimating the metal element content in ores, which helps in understanding ore composition and optimizing mining and processing strategies. However, due to the presence of a large number of redundant features in XRF spectra, traditional quantitative analysis models struggle to effectively capture the nonlinear relationship between element concentration and spectral information of XRF, making it more difficult to accurately predict metal element concentrations. Thus, analyzing ore element concentrations by XRF remains a significant challenge.
View Article and Find Full Text PDF