Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There have been significant advances in the development of vaccines for the prevention of various infectious diseases in the last few decades. These vaccines are mainly composed of proteins and nucleic acids. Poor handling and storage, exposure to high temperatures that lead to enzymatic degradation, pH variation, and various other stresses can denature the proteins or nucleic acids present in any vaccine formulation. Therefore, it is necessary to maintain a proper environment to preserve the integrity of biospecimens. To overcome these challenges, we report a practical and user-friendly approach for sol-gels called "BioCaRGOS" that can stabilize heme proteins not only in the presence of degrading enzymes and acidic pH but simultaneously maintain stability at room temperature. Heme proteins, such as myoglobin and cytochrome c, have been used for this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483679PMC
http://dx.doi.org/10.1021/acsomega.3c04012DOI Listing

Publication Analysis

Top Keywords

heme proteins
12
enzymatic degradation
8
proteins nucleic
8
nucleic acids
8
proteins
5
investigating biocargos
4
biocargos sol-gel
4
sol-gel matrix
4
matrix stability
4
stability heme
4

Similar Publications

Beyond Hemoglobin: A Review of Hemocyanin and the Biology of Purple Blood.

Zhongguo Ying Yong Sheng Li Xue Za Zhi

September 2025

PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH#2, Bhauti, Kanpur, Uttar Pradesh, India.

Hemocyanin is dissolved freely in hemolymph, the invertebrate blood substitute, in contrast to haemoglobin, which is encased in red blood cells. When oxygenated, this pigment gives mollusc and arthropod blood its characteristic blue or purple hue. This review article delves into the fascinating biology of hemocyanin, the copper-based oxygen-carrying protein responsible for "purple blood" in many invertebrates, contrasting its characteristics with the more familiar iron-based hemoglobin.

View Article and Find Full Text PDF

Astaxanthin attenuates AFB1-induced hepatotoxicity by activating Nrf2 and inhibiting the NF-κB signaling pathway.

Ecotoxicol Environ Saf

September 2025

Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Guangdong 524088, China. Electronic address:

Aflatoxin B1 (AFB1)-induced hepatotoxicity is a common toxic disease in poultry farming. However, there is currently a lack of effective pharmaceutical interventions for treating AFB1. Astaxanthin (AST), a natural carotenoid, exhibits potent antioxidant and immune-enhancing properties.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

There is a lack of longitudinal data on type 2 diabetes (T2D) in low- and middle-income countries. We leveraged the electronic health records (EHR) system of a publicly funded academic institution to establish a retrospective cohort with longitudinal data to facilitate benchmarking, surveillance, and resource planning of a multi-ethnic T2D population in Malaysia. This cohort included 15,702 adults aged ≥ 18 years with T2D who received outpatient care (January 2002-December 2020) from Universiti Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia.

View Article and Find Full Text PDF

Background: Hemoglobin A1c (HbA1c) is a stable compound, which is an important indicator for diagnosing glycemia, evaluating blood glucose control in patients with diabetes, and guiding the formulation of treatment plans. However, the detection of HbA1c is easily affected by many factors, resulting in a false increase or decrease, which affects the accuracy of test results.

Methods: In this paper, two abnormal HbA1c results were detected in the laboratory, which did not match the blood glucose detected at the same time.

View Article and Find Full Text PDF