Long Covid is a post-viral syndrome characterized by persistent symptoms targeting multiple organ systems after initial SARS-CoV-2 infection. Current literature suggests that the mechanisms causing Long Covid involve viral persistence, immune dysregulation, systemic inflammation, endothelial dysfunction, and metabolic disturbances. By forming reservoirs in the tissues of various organs, SARS-CoV-2 may evade immunological clearances while triggering immune responses and contributing to chronic symptoms through cytokine imbalances, T-cell exhaustion, and systemic inflammation.
View Article and Find Full Text PDFGreen hydrogen, generated through the electrolysis of water using renewable energy sources, is recognized as a highly promising alternative to fossil fuels in the pursuit of net-zero carbon emissions. Electrocatalysts are crucial for reducing overpotentials and enhancing the efficiency of the hydrogen evolution reaction (HER) for the production of green hydrogen. Homogeneous HER serves as a primary method to assess the activity and mechanisms of novel non-precious molecular electrocatalysts in pursuit of replacing precious platinum standards.
View Article and Find Full Text PDFThere have been significant advances in the development of vaccines for the prevention of various infectious diseases in the last few decades. These vaccines are mainly composed of proteins and nucleic acids. Poor handling and storage, exposure to high temperatures that lead to enzymatic degradation, pH variation, and various other stresses can denature the proteins or nucleic acids present in any vaccine formulation.
View Article and Find Full Text PDFPreviously, our group had demonstrated long term stabilization of protein biomarkers using BioCaRGOS, a silica sol-gel technology. Herein, we describe workflow modifications to allow for extraction of cell free DNA (cfDNA) from primary samples containing working concentrations of BioCaRGOS, as well as the compatibility of BioCaRGOS with droplet digital PCR (ddPCR) analysis for pancreatic cancer biomarkers , KRAS circulating tumor DNA (ctDNA). Preliminary attempts to extract ctDNA from BioCaRGOS containing samples demonstrated interference in the extraction of primary samples and the interference with ddPCR analysis when BioCaRGOS was directly introduced to stabilize sample extracts.
View Article and Find Full Text PDFStorage of biospecimens in their near native environment at room temperature can have a transformative global impact, however, this remains an arduous challenge to date due to the rapid degradation of biospecimens over time. Currently, most isolated biospecimens are refrigerated for short-term storage and frozen (-20 °C, -80 °C, liquid nitrogen) for long-term storage. Recent advances in room temperature storage of purified biomolecules utilize anhydrobiosis.
View Article and Find Full Text PDFRoom temperature biospecimen storage for prolonged periods is essential to eliminate energy consumption by ultra-low freezing or refrigeration-based storage techniques. State of the art practices that sufficiently minimize the direct or hidden costs associated with cold-chain logistics include ambient temperature storage of biospecimens (, DNA, RNA, proteins, lipids) in the dry state. However, the biospecimens are still well-exposed to the stress associated with drying and reconstitution cycles, which augments the pre-analytical degradation of biospecimens prior to their downstream processing.
View Article and Find Full Text PDFUnlabelled: Long-term stabilization of DNA is needed for forensic, clinical, in-field operations and numerous other applications. Although freezing (<-20 °C) and dry storage are currently the preferential methods for long-term storage, a noticeable pre-analytical degradation of DNA over time, upfront capital investment and recurring costs have demonstrated a need for an alternative long-term room-temperature preservation method. Herein, we report a novel, fast (~5 min) silica sol-gel preparation method using a standard microwave-initiated polymerization reaction amenable to stabilization of DNA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
A series of crystalline nickel(II) complexes (-) based on inexpensive bis(thiosemicarbazone) ligands diacetylbis(4-methyl-3-thiosemicarbazone) (HATSM), diacetylbis(4,4-dimethyl-3-thiosemicarbazone) (HATSDM), and diacetylbis[4-(2,2,2-trifluoroethyl)-3-thiosemicarbazone] (HATSM-F) were synthesized and characterized by single-crystal X-ray diffraction and NMR, UV-visible, and Fourier transform infrared spectroscopies. Modified electrodes - were prepared with films of - deposited on glassy carbon and evaluated as potential hydrogen evolution reaction (HER) catalysts. HER studies in 0.
View Article and Find Full Text PDFWe have demonstrated a simple and scalable fabrication process for defect-rich MoS directly from ammonium tetrathiomolybdate precursor using intense pulse light treatment in milliseconds durations. The formation of MoS from the precursor film after intense pulsed light exposure was confirmed with XPS, XRD, electron microscopy and Raman spectroscopy. The resulting material exhibited high activity for the hydrogen evolution reaction (HER) in acidic media, requiring merely 200 mV overpotential to reach a current density of 10 mA cm.
View Article and Find Full Text PDFNatl J Maxillofac Surg
January 2018
Background: Head and neck cancers constitute about 5%-8% of total body cancers in Europe, America, but in India, this figure is somewhat higher. The aim of this study is to evaluate the current burden of oral cancers in India, particularly North-East India.
Materials And Methods: A full-length study starting from patient counseling to clinical and histopathological examination and grading was planned.
Adv Mater
November 2017
Here, the hydrogen evolution reaction (HER) activities at the edge and basal-plane sites of monolayer molybdenum disulfide (MoS ) synthesized by chemical vapor deposition (CVD) are studied using a local probe method enabled by selected-area lithography. Reaction windows are opened by e-beam lithography at sites of interest on poly(methyl methacrylate) (PMMA)-covered monolayer MoS triangles. The HER properties of MoS edge sites are obtained by subtraction of the activity of the basal-plane sites from results containing both basal-plane and edge sites.
View Article and Find Full Text PDFThe values of the ionization energies of transition metal dichalcogenides (TMDs) are needed to assess their potential usefulness in semiconductor heterojunctions for high-performance optoelectronics. Here, we report on the systematic determination of ionization energies for three prototypical TMD monolayers (MoSe, WS, and MoS) on SiO using photoemission electron microscopy with deep ultraviolet illumination. The ionization energy displays a progressive decrease from MoS, to WS, to MoSe, in agreement with predictions of density functional theory calculations.
View Article and Find Full Text PDFIn search of affordable, flexible, lightweight, efficient and stable supercapacitors, metal oxides have been shown to provide high charge storage capacity but with poor cyclic stability due to structural damage occurring during the redox process. Here, we develop an efficient flexible supercapacitor obtained by carbonizing abundantly available and recyclable jute. The active material was synthesized from jute by a facile hydrothermal method and its electrochemical performance was further enhanced by chemical activation.
View Article and Find Full Text PDFBackground And Objectives: The US Food and Drug Administration and American Association of Blood Banks approved the type and screen approach in 1980s, long after antibody screen (AS) was introduced in 1950s. The present study omits conventional anti-human globulin (AHG) crossmatch and replaces it with immediate-spin (IS) crossmatch as part of pretransfusion testing in AS-negative patients to study the safety and effectiveness of IS crossmatch in recipients.
Materials And Methods: This prospective longitudinal study was conducted on over 5000 red cell units transfused to AS-negative patients admitted to the hospital.
A prerequisite for carbon nanotube-based optoelectronic devices is the ability to sort them into a pure semiconductor phase. One of the most common sorting routes is enabled through using specific wrapping polymers. Here we show that subtle changes in the polymer structure can have a dramatic influence on the figures of merit of a carbon nanotube-based photovoltaic device.
View Article and Find Full Text PDFIntegration of organic/inorganic hybrid perovskites with metallic or semiconducting phases of 2D MoS nanosheets via solution processing is demonstrated. The results show that the collection of charge carriers is strongly dependent on the electronic properties of the 2D MoS with metallic MoS showing high responsivity and the semiconducting phase exhibiting high on/off ratios.
View Article and Find Full Text PDFHeterostructuring provides novel opportunities for exploring emergent phenomena and applications by developing designed properties beyond those of homogeneous materials. Advances in nanoscience enable the preparation of heterostructures formed incommensurate materials. Two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are of particular interest due to their distinct physical characteristics.
View Article and Find Full Text PDFBiosens Bioelectron
December 2016
For the first time, a paper based enzymatic fuel cell is used as self-recharged supercapacitor. In this supercapacitive enzymatic fuel cell (SC-EFC), the supercapacitive features of the electrodes are exploited to demonstrate high power output under pulse operation. Glucose dehydrogenase-based anode and bilirubin oxidase-based cathode were assembled to a quasi-2D capillary-driven microfluidic system.
View Article and Find Full Text PDFThree-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single‐junction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions.
View Article and Find Full Text PDFThe excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated.
View Article and Find Full Text PDFHydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope.
View Article and Find Full Text PDFSolution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. Despite the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses.
View Article and Find Full Text PDFSolution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration.
View Article and Find Full Text PDFGraphitic materials are essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction.
View Article and Find Full Text PDF