Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486450PMC
http://dx.doi.org/10.3390/foods12173159DOI Listing

Publication Analysis

Top Keywords

postharvest protection
12
nano technological
4
technological frontiers
4
frontiers sustainable
4
sustainable platform
4
postharvest
4
platform postharvest
4
postharvest preservation
4
preservation berry
4
berry fruits
4

Similar Publications

Genistein: A promising botanical fungicide candidate for enhancing tomato yield and quality by controlling Alternaria solani.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

The overreliance on traditional chemical fungicides, combined with the emergence of resistance, poses significant challenges for food safety. Early blight, caused by the fungal pathogen Alternaria solani (A. solani), is among the most significant contributors to pre- and postharvest yield losses in tomato cultivation.

View Article and Find Full Text PDF

is a significant phytopathogen in both pre- and postharvest stages of fruit development and storage. The development of environmentally-friendly biological control agents has attracted increasing research interest. In this study, we characterized a fungal strain ( LQ) that strongly inhibits .

View Article and Find Full Text PDF

Background: Almond blossom blight, caused by Monilinia spp., is a notable fungal disease associated with intensified crop management practices. In this study, we aimed to investigate the epidemiology of Monilinia spp.

View Article and Find Full Text PDF

In vitro screening of synbiotics based on a four-strain probiotic blend and their therapeutic potential for ulcerative colitis.

Biomed Pharmacother

September 2025

Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China. Elec

This study explores the therapeutic effects of synbiotics on ulcerative colitis (UC) using an in vitro fermentation model and a Dextran Sulfate Sodium (DSS)-induced UC mouse model. We assessed the impact of synbiotics on probiotic proliferation, short-chain fatty acid (SCFA) production, metabolic regulation, and intestinal barrier function. Fructooligosaccharide (FOS) and Inulin (INU) significantly promoted probiotic growth and increased SCFA production, especially acetate, propionate, butyrate, and isobutyrate (p < 0.

View Article and Find Full Text PDF

Saxitoxin in Alaskan commercial crab species.

PLoS One

September 2025

National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Beaufort Laboratory, Beaufort, North Carolina, United States of America.

Paralytic shellfish poisoning (PSP) is a pervasive human health concern associated with subsistence, recreationally and commercially harvested Alaskan shellfish. PSP is caused by saxitoxins (STX), a family of structurally similar neurotoxins produced by the marine microalgae Alexandrium catenella (formerly A. fundyense).

View Article and Find Full Text PDF