Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Type 2 diabetes (T2D) is an independent risk factor for Alzheimer's disease (AD). Exendin-4 (Ex-4), a widely used glucagon-like peptide-1 receptor agonist drug in the treatment of T2D, has been demonstrated the therapeutic effects on diabetic encephalopathy (DE). Especially, the Ex-4 ameliorates the tau hyperphosphorylation and cognitive impairment in DE. And these crucial alterations are also important bridge between T2D and AD. However, its unique mechanism is unclear.

Methods: The db/db mice, high-fat-diet (HFD) / streptozotocin (STZ)-induced diabetic (HF-diabetic) mice, and high-glucose-damaged (HGD) HT-22 hippocampal cells were enrolled to examine the effects of Ex-4 on AD-like changes in T2D. The Novel object recognition test (NORT) and Morris water maze test (MWMT) were conducted to evaluate the cognitive impairment. The Dickkopf-1 (DKK1) was employed to weaken the activation of the Wnt/β-catenin pathway to explore the mechanism of Ex-4 in protecting the brain functions. The JASPAR was based to predict the interaction between NeuroD1 and the promoter region of Ins2. Moreover, the chromatin immunoprecipitation coupled with quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter assays were performed.

Results: Ex-4 alleviated the tau hyperphosphorylation, increased the brain-derived insulin, and improved the PI3K/AKT/GSK3-β signalling in db/db mice, HF-diabetic mice, and HGD HT-22 hippocampal neuronal cells. The NORT and MWMT indicated that Ex-4 alleviated the learning and memory deficits in HF-diabetic mice. The inhibitor Dickkopf-1 (DKK1) of the Wnt/β-catenin pathway significantly blocked the protective effects of Ex-4. Regarding further molecular mechanisms, NeuroD1 was affected by Ex-4 in vivo and in vitro, and the knockdown or overexpression of NeuroD1 suggested its crucial role in promoting the brain insulin by Ex-4. Meanwhile, the ChIP‒qPCR and luciferase reporter assays confirmed the combination between NeuroD1 and the promoter region of the insulin-encoding gene Ins2. And this interaction could be promoted by Ex-4.

Conclusions: Our study proposes that Ex-4 alleviates tau hyperphosphorylation and cognitive dysfunction by increasing Ins2-derived brain insulin through the Wnt/β-catenin/NeuroD1 signaling in T2D. And its also show new lights on part of the progress and mechanism on treatment targets for the DE in T2D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478475PMC
http://dx.doi.org/10.1186/s10020-023-00718-2DOI Listing

Publication Analysis

Top Keywords

tau hyperphosphorylation
16
hyperphosphorylation cognitive
12
cognitive impairment
12
hf-diabetic mice
12
ex-4
10
ameliorates tau
8
type diabetes
8
db/db mice
8
hgd ht-22
8
ht-22 hippocampal
8

Similar Publications

Targeting protein misfolding in Alzheimer's disease: The emerging role of molecular chaperones.

Biomed Pharmacother

September 2025

Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma 378, Ethiopia; Division of Research & Development, Lovely Professional University, Phagwara 144411, India. Electronic address:

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by cognitive decline and the accumulation of misfolded proteins, including amyloid-beta and hyperphosphorylated tau, which impair neuronal function and promote cell death. These misfolded proteins disrupt proteostasis by forming toxic aggregates that exacerbate disease progression. Molecular chaperones, such as heat shock proteins, actively maintain protein homeostasis by assisting in proper folding, preventing aggregation, and promoting the clearance of misfolded proteins.

View Article and Find Full Text PDF

In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.

View Article and Find Full Text PDF

Hyperphosphorylation of Tau and the ensuing microtubule destabilization are linked to synaptic dysfunction in Alzheimer's disease (AD). We find a marked increase of phosphorylated Tau (pTau) in cortical neurons differentiated from induced pluripotent stem cells (iPSCs) of AD patients. It is accompanied by significantly elevated expression of Serum and Glucocorticoid-regulated Kinase-1 (SGK1), which is induced by cellular stress, and Histone Deacetylase 6 (HDAC6), which deacetylates tubulin to destabilize microtubules.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles, composed of hyperphosphorylated tau, have been implicated in the cognitive impairments observed in Alzheimer's disease. While the precise mechanism remains elusive, cognitive deficits in Alzheimer's disease have been associated with disrupted brain network activity. To investigate this mechanism, researchers have developed several tau transgenic models.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF