98%
921
2 minutes
20
Environmental influences on brain structure and function during early development have been well-characterized. In pre-registered analyses, we test the theory that socioeconomic status (SES) is associated with differences in trajectories of intrinsic brain network development from birth to three years ( = 261). Prenatal SES is associated with developmental increases in cortical network segregation, with neonates and toddlers from lower-SES backgrounds showing a steeper increase in cortical network segregation with age, consistent with accelerated network development. Associations between SES and cortical network segregation occur at the local scale and conform to a sensorimotor-association hierarchy of cortical organization. SES-associated differences in cortical network segregation are associated with language abilities at two years, such that lower segregation is associated with improved language abilities. These results yield key insight into the timing and directionality of associations between the early environment and trajectories of cortical development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10473645 | PMC |
http://dx.doi.org/10.1101/2023.08.18.552639 | DOI Listing |
Neurotrauma Rep
August 2025
Department of Radiology, Weill Cornell Medicine; New York, New York, USA.
Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Background: Slapping automatism is a type of automatism observed during epileptic seizures, but its underlying electrophysiological mechanisms remain poorly understood. Stereo-electroencephalography (SEEG) provides a unique opportunity to investigate the associated cortical areas with epileptiform discharges during the slapping automatism.
Case Report: We report five cases of drug-resistant epilepsy in which SEEG recordings captured slapping automatism.
Front Neural Circuits
September 2025
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.
Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.
J Neurosci
September 2025
Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDF