The polyA tail facilitates splicing of last introns with weak 3' splice sites via PABPN1.

EMBO Rep

College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China.

Published: October 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The polyA tail of mRNAs is important for many aspects of RNA metabolism. However, whether and how it regulates pre-mRNA splicing is still unknown. Here, we report that the polyA tail acts as a splicing enhancer for the last intron via the nuclear polyA binding protein PABPN1 in HeLa cells. PABPN1-depletion induces the retention of a group of introns with a weaker 3' splice site, and they show a strong 3'-end bias and mainly locate in nuclear speckles. The polyA tail is essential for PABPN1-enhanced last intron splicing and functions in a length-dependent manner. Tethering PABPN1 to nonpolyadenylated transcripts also promotes splicing, suggesting a direct role for PABPN1 in splicing regulation. Using TurboID-MS, we construct the PABPN1 interactome, including many spliceosomal and RNA-binding proteins. Specifically, PABPN1 can recruit RBM26&27 to promote splicing by interacting with the coiled-coil and RRM domain of RBM27. PABPN1-regulated terminal intron splicing is conserved in mice. Together, our study establishes a novel mode of post-transcriptional splicing regulation via the polyA tail and PABPN1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561182PMC
http://dx.doi.org/10.15252/embr.202357128DOI Listing

Publication Analysis

Top Keywords

polya tail
20
splicing
9
intron splicing
8
splicing regulation
8
pabpn1
7
polya
6
tail facilitates
4
facilitates splicing
4
splicing introns
4
introns weak
4

Similar Publications

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Polyadenylation is a dynamic process that is important in cellular physiology, which has implications in messenger RNA decay rates, translation efficiency, and isoform-specific regulation. Oxford Nanopore Technologies direct RNA sequencing provides a strategy for sequencing the full-length RNA molecule and analysis of the transcriptome. Several tools are currently available for poly(A) tail length estimation, including well-established methods like tailfindr and nanopolish, as well as more recent deep learning models like Dorado.

View Article and Find Full Text PDF

A Comprehensive Lateral Flow Strip Assay for On-Site mRNA Vaccine Quality Control in Decentralized Manufacturing.

Adv Sci (Weinh)

September 2025

CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.

The rapid adoption of mRNA-based vaccines highlights the critical need for on-site quality control (QC) methods, particularly in low-income countries with decentralized manufacturing. Existing techniques, such as liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis (CE), are resource-intensive, requiring specialized equipment and expertise. To address this, a comprehensive lateral flow strip assay (LFSA) has been developed to evaluate key mRNA quality attributes-5' capping efficiency, integrity, and lipid nanoparticles (LNPs) encapsulation efficiency.

View Article and Find Full Text PDF

Localized 2'-OH Acylation at Poly(A) Extends RNA Translation.

J Am Chem Soc

September 2025

Department of Chemistry, Stanford University, Stanford, California 94305, United States.

The potential of coding RNAs as a general therapeutic modality is limited by their short intracellular lifetime. Here, we investigate the effects of localized post-transcriptional RNA modification on protein expression over time. While 2'-OH acylation of GFP RNA with stable adducts in the protein-coding region strongly suppressed protein expression, acylation at the poly(A) tail extended translation duration, with protein output increased by up to 8-fold at 36 h.

View Article and Find Full Text PDF

The poly(A) tail plays a crucial role in mRNA stability and translation efficiency. Chemical modification of the poly(A) tail is a promising approach for stabilizing mRNA against deadenylation. In this study, we investigated the effect of poly(A) chemical modifications using phosphorothioate (PS), 2'-fluoro (2'-F), 2'--methyl (2'-OMe), and 2'--methoxyethyl (2'-MOE) modifications.

View Article and Find Full Text PDF