Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plasmonic hybrids are regarded as promising candidates for water purification due to their structure-dependent photocatalysis and photothermal performance. It remains a challenge to develop materials that possess these two characteristics for efficient water purification. Herein, plasmonic TiCT/BiS two-dimensional (2D)/2D hybrids were prepared for efficient solar-driven water purification the combination of photothermal conversion and photocatalysis. Benefitting from broad light absorption, large 2D/2D interfaces, and efficient charge transfer, the binary hybrids showed high-efficiency photothermal conversion and photothermal-assisted photocatalytic activity. By depositing these 2D/2D hybrids on a hydrophilic and porous cotton piece, the TiCT/BiS membrane displayed a high water evaporation rate and solar-to-vapor efficiency under one-sun irradiation. The solar-driven evaporation of seawater, heavy metal ion solution, and dye solution jointly indicated that the plasmonic membrane shows great potential for drinkable water generation and industrial wastewater treatment. Most importantly, the synergistic effect of photothermal evaporation and photocatalysis of the TiCT/BiS membrane on water purification was demonstrated. The polluted water can not only be treated by evaporation, but also be degraded photocatalysis under solar light irradiation. This work provides new insight into designing functional materials for water purification based on the combination of photothermal conversion and photocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr02848hDOI Listing

Publication Analysis

Top Keywords

water purification
24
photothermal conversion
16
conversion photocatalysis
12
water
9
synergistic photothermal
8
efficient solar-driven
8
solar-driven water
8
purification plasmonic
8
2d/2d hybrids
8
combination photothermal
8

Similar Publications

This study investigates the synthesis of aromatic nitriles using an evolved variant of OxdF1 (L318F/F306Y), an aldoxime dehydratase from Pseudomonas putida F1, engineered for improved catalytic efficiency toward benzaldehyde oxime. The double OxdF1 (L318F/F306Y) mutant effectively catalyzes the conversion of various benzaldoxime derivatives to the corresponding nitriles. Due to the enzyme's inherent instability, immobilized whole-cell systems are employed in a flow reactor to improve its stability and broaden its applicability, with the biotransformation of benzaldehyde oxime and 2,6-difluorobenzaldehyde oxime serving as case studies.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

Secondary metabolites are important bioactive compounds for diet and medicine. This study optimizes the extraction of hydroethanolic herbal extracts using an EDGE (Energized Dispersive Guided Extraction) system, evaluates their antioxidant capacity, and analyzes correlations among antioxidant activity, total phenolic content, and individual compounds. A Doehlert matrix design was used to optimize extraction, having temperature and time as independent variables, and total phenolic content (mg GAE/g) as the response, quantified via the Folin-Ciocalteu method.

View Article and Find Full Text PDF

Palytoxin-like compounds, including ovatoxins, are potent emerging toxins responsible for human respiratory poisonings following inhalation of contaminated marine aerosols. Periodic massive proliferations of the ovatoxin-producing organism (Ostreopsis cf. ovata) worldwide, particularly in the Mediterranean, have caused severe toxic outbreaks, drawing the attention of health authorities.

View Article and Find Full Text PDF

Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.

View Article and Find Full Text PDF