Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent exome-wide studies discovered frequent somatic mutations in the epigenetic modifier ZNF217 in primary mediastinal B cell lymphoma (PMBCL) and related disorders. As functional consequences of ZNF217 alterations remain unknown, we comprehensively evaluated their impact in PMBCL. Targeted sequencing identified genetic lesions affecting ZNF217 in 33% of 157 PMBCL patients. Subsequent gene expression profiling (n = 120) revealed changes in cytokine and interferon signal transduction in ZNF217-aberrant PMBCL cases. In vitro, knockout of ZNF217 led to changes in chromatin accessibility interfering with binding motifs for crucial lymphoma-associated transcription factors. This led to disturbed expression of interferon-responsive and inflammation-associated genes, altered cell behavior, and aberrant differentiation. Mass spectrometry demonstrates that ZNF217 acts within a histone modifier complex containing LSD1, CoREST and HDAC and interferes with H3K4 methylation and H3K27 acetylation. Concluding, our data suggest non-catalytic activity of ZNF217, which directs histone modifier complex function and controls B cell differentiation-associated patterns of chromatin structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10624633PMC
http://dx.doi.org/10.1038/s41375-023-02013-9DOI Listing

Publication Analysis

Top Keywords

interferon signal
8
signal transduction
8
chromatin accessibility
8
cell lymphoma
8
histone modifier
8
modifier complex
8
znf217
6
frequent znf217
4
znf217 mutations
4
mutations lead
4

Similar Publications

Type I interferon (IFN-I) is highly prevalent in autoimmune disorders and is intricately involved in disease pathogenesis, including Sjögren's disease (SjD), also known as Sjögren's syndrome. Although the T follicular helper (Tfh) cell response has been shown to drive SjD development in a mouse model of experimental Sjögren's syndrome (ESS), the connection between IFN-I and the Tfh cell response remains unclear. As the activation of stimulator of interferon genes (STING) induces IFN-I production, we first demonstrated that mice deficient in STING or IFN-I signaling presented diminished Tfh cells and were completely resistant to ESS development.

View Article and Find Full Text PDF

Monogenic lupus offers valuable insights into the underlying mechanisms and therapeutic approaches for systemic lupus erythematosus (SLE). Here we report on five patients with SLE carrying recessive mutations in phospholipase D family member 4 (PLD4). Deleterious variants in PLD4 resulted in impaired single-stranded nucleic acid exonuclease activity in in vitro and ex vivo assays.

View Article and Find Full Text PDF

Background: While highly efficacious for numerous cancers, immune checkpoint inhibitors (ICIs) can cause unpredictable and potentially severe immune-related adverse events (irAEs), underscoring the need to understand irAE biology.

Methods: We used a multidimensional approach incorporating single-cell RNA sequencing, mass cytometry, multiplex cytokine assay, and antinuclear antibody (ANA) profiling to characterize the peripheral immune landscape of patients receiving ICI therapy according to irAE development.

Results: Analysis of 162 patients revealed that individuals who developed clinically significant irAEs exhibited a baseline proinflammatory, autoimmune-like state characterized by a significantly higher abundance of CD57 T and natural killer (NK) T cells, plasmablasts, proliferating and activated CXCR3 lymphocytes, CD8 effector and terminal effector memory T cells, along with reduced NK cells and elevated plasma ANA levels.

View Article and Find Full Text PDF

PNMA4 enhances anti-RNA virus immunity by promoting RIG-I signaling pathway.

Int Immunopharmacol

September 2025

Pharmacy of College, Hunan University of Chinese Medicine, Changsha, China,; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, China; Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumo

Mitochondria play a crucial role as a hub for innate immune signal transduction, with mitochondrial antiviral signaling protein (MAVS) being a key regulator in the activation of interferon-β (IFN-β) production. It is essential for MAVS to initiate innate antiviral responses against RNA viruses, contributing to the host's defense mechanisms. In this study, we identified the mitochondrial protein Paraneoplastic Ma Family 4 (PNMA4/MOAP1) as a MAVS-interacting protein by using proximity-based labeling technology in THP-1 and discovered that it could enhance retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway.

View Article and Find Full Text PDF

Pregnancy demands dynamic immune adaptations to support implantation, fetal growth, and labor while maintaining maternal-fetal tolerance. The immune profile shifts from pro-inflammatory during implantation to anti-inflammatory in mid-pregnancy, reverting to inflammation at labor onset. Key immune cells like NK cells, macrophages, dendritic cells, and T cells dominate the decidua, guiding successful placental development.

View Article and Find Full Text PDF