Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skeletal muscle disease severity can often progress asymmetrically across muscle groups and heterogeneously within tissues. An example is Duchenne Muscular Dystrophy (DMD) in which lack of dystrophin results in devastating skeletal muscle wasting in some muscles whereas others are spared or undergo hypertrophy. An efficient, non-invasive approach to identify sites of asymmetry and degenerative lesions could enable better patient monitoring and therapeutic targeting of disease. In this study, we utilized a versatile intravenously injectable mesoporous silica nanoparticle (MSNP) based nanocarrier system to explore mechanisms of biodistribution in skeletal muscle of mdx mouse models of DMD including wildtype, dystrophic, and severely dystrophic mice. Moreover, MSNPs could be imaged in live mice and whole muscle tissues enabling investigation of how biodistribution is altered by different types of muscle pathology such as inflammation or fibrosis. We found MSNPs were tenfold more likely to aggregate within select mdx muscles relative to wild type, such as gastrocnemius and quadriceps. This was accompanied by decreased biodistribution in off-target organs. We found the greatest factor affecting preferential delivery was the regenerative state of the dystrophic skeletal muscle with the highest MSNP abundance coinciding with the regions showing the highest level of embryonic myosin staining and intramuscular macrophage uptake. To demonstrate, muscle regeneration regulated MSNP distribution, we experimentally induced regeneration using barium chloride which resulted in a threefold increase of intravenously injected MSNPs to sites of regeneration 7 days after injury. These discoveries provide the first evidence that nanoparticles have selective biodistribution to skeletal muscle in DMD to areas of active regeneration and that nanoparticles could enable diagnostic and selective drug delivery in DMD skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463982PMC
http://dx.doi.org/10.1186/s12951-023-01994-0DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
muscle
11
muscle dmd
8
dmd skeletal
8
biodistribution skeletal
8
skeletal
7
dmd
5
nanoparticles systemically
4
systemically biodistribute
4
biodistribute regenerating
4

Similar Publications

Maintenance of organismal function requires tightly regulated biomolecular communication. However, with aging, communication deteriorates, thereby disrupting effective information flow. Using information theory applied to skeletal muscle single cell RNA-seq data from young, middle-aged, and aged animals, we quantified the loss of communication efficiency over time.

View Article and Find Full Text PDF

Objectives: To explore the relationships between cardiac parameters and body composition indices, identifying predictors of subclinical cardiac systolic dysfunction.

Methods: Using anthropometric and serological parameters, echocardiography, and body composition analysis, this study evaluated metabolic profiles, cardiac remodeling patterns, and body composition characteristics in young adult obese patients, while quantifying the correlations between cardiac parameters and body composition indices. Subclinical left ventricular systolic dysfunction was defined as global longitudinal strain (GLS) < 18%.

View Article and Find Full Text PDF

Purpose: To objectively quantify, in East Asians and Caucasians, the width and distribution of the retro-orbicularis oculi and frontalis fat (ROOF) pad, subcutaneous fat, and orbicularis oculi muscle (OOM) at the superior orbital rim margin as well as 5 mm superior and inferior to this point.

Methods: Thirty adults were studied by high-resolution, surface coil MRI. In the quasi-sagittal image through the globe center, the ROOF, subcutaneous fat, and OOM thickness were measured anterior to the orbital septum, at 3 points: at the superior orbital rim, and 5 mm superior, and 5 mm inferior to the rim.

View Article and Find Full Text PDF

Background: Liver cirrhosis, characterized by chronic inflammation, is frequently complicated by malnutrition. Nutritional indices, such as the prognostic nutritional index (PNI) and the skeletal muscle index (SMI), calculated as the muscle area quantified via CT scans at the third lumbar vertebra level divided by the square of the patient's height in meters (cm/m), are associated with outcomes in inflammatory diseases.

Objectives: We aimed to evaluate the diagnostic efficacy of the PNI both independently and in combination with the SMI for identifying malnutrition in cirrhosis and to explore their prognostic implications.

View Article and Find Full Text PDF

Neutral Lipid Storage Disease with Myopathy (NLSDM) is a rare lipid metabolism disorder caused by impaired Adipose Triglyceride Lipase (ATGL) activity, leading to neutral lipid accumulation in various tissues. It typically manifests with progressive skeletal myopathy, with an onset of around 35 years. In addition, some patients develop cardiomyopathy and liver dysfunction.

View Article and Find Full Text PDF