98%
921
2 minutes
20
This technical note critically evaluates the transformative potential of Artificial Intelligence (AI) and sensor technologies in the swiftly evolving dairy livestock export industry. We focus on the novel application of the Internet of Things (IoT) in long-distance livestock transportation, particularly in livestock enumeration and identification for precise traceability. Technological advancements in identifying behavioral patterns in 'shy feeder' cows and real-time weight monitoring enhance the accuracy of long-haul livestock transportation. These innovations offer benefits such as improved animal welfare standards, reduced supply chain inaccuracies, and increased operational productivity, expanding market access and enhancing global competitiveness. However, these technologies present challenges, including individual animal customization, economic analysis, data security, privacy, technological adaptability, training, stakeholder engagement, and sustainability concerns. These challenges intertwine with broader ethical considerations around animal treatment, data misuse, and the environmental impacts. By providing a strategic framework for successful technology integration, we emphasize the importance of continuous adaptation and learning. This note underscores the potential of AI, IoT, and sensor technologies to shape the future of the dairy livestock export industry, contributing to a more sustainable and efficient global dairy sector.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458494 | PMC |
http://dx.doi.org/10.3390/s23167045 | DOI Listing |
ACS Nano
September 2025
International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China.
Mimicking human brain functionalities with neuromorphic devices represents a pivotal breakthrough in developing bioinspired electronic systems. The human somatosensory system provides critical environmental information and facilitates responses to harmful stimuli, endowing us with good adaptive capabilities. However, current sensing technologies often struggle with insufficient sensitivity, dynamic response, and integration challenges.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFEmerg Top Life Sci
September 2025
Hurdle.bio / Chronomics Ltd., London, UK.
Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
Pax-5a gene, as a nucleic acid biomarker closely associated with B-cell acute lymphoblastic leukemia (B-ALL), holds significant potential for early disease diagnosis. In this study, we developed a highly accurate and efficient "on-super on-off" photoelectrochemical (PEC) biosensor based on a dual-photoelectrode heterojunction system integrated with a multisphere cascade DNA amplification strategy. The designed heterojunction dual-photoelectrode platform, comprising a InO/CdS photoanode (on state) and an in situ-formed MIL-68(In)/InO (MIO) photocathode, effectively extends the electron-hole transport pathway, enhances photogenerated charge separation, and produces high-amplitude signal output (super on state), thereby providing a robust baseline for signal transduction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India.
Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.
View Article and Find Full Text PDF