Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of the intestinal microbiome in the neonate starts, mainly, at birth, when the infant receives its founding microbial inoculum from the mother. This microbiome contains genes conferring resistance to antibiotics since these are found in some of the microorganisms present in the intestine. Similarly to microbiota composition, the possession of antibiotic resistance genes is affected by different perinatal factors. Moreover, antibiotics are the most used drugs in early life, and the use of antibiotics in pediatrics covers a wide variety of possibilities and treatment options. The disruption in the early microbiota caused by antibiotics may be of great relevance, not just because it may limit colonization by beneficial microorganisms and increase that of potential pathogens, but also because it may increase the levels of antibiotic resistance genes. The increase in antibiotic-resistant microorganisms is one of the major public health threats that humanity has to face and, therefore, understanding the factors that determine the development of the resistome in early life is of relevance. Recent advancements in sequencing technologies have enabled the study of the microbiota and the resistome at unprecedent levels. These aspects are discussed in this review as well as some potential interventions aimed at reducing the possession of resistance genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458625PMC
http://dx.doi.org/10.3390/microorganisms11081907DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
antibiotic resistance
8
early life
8
resistance
5
folks bad
4
bad boon
4
boon antimicrobial
4
antimicrobial resistance
4
resistance infant
4
infant gut
4

Similar Publications

Background: Clubroot, caused by Plasmodiophora brassicae, significantly impacts cruciferous crop production worldwide. Biocontrol is an environmentally friendly and promising approach for clubroot management. Endophytic bacteria are known for their ability to promote plant growth and induce resistance against plant diseases.

View Article and Find Full Text PDF

Lipid Metabolism and Immune Crosstalk in Fish Gut-Liver Axis: Insights from SOCS8 Knockout and Dietary Stress Models.

Fish Shellfish Immunol

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi

Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.

View Article and Find Full Text PDF

Amazonian buriti and pracaxi as potential functional feed additives to improve shrimp immunity and resistance to WSSV.

Fish Shellfish Immunol

September 2025

Laboratory of Applied Immunology in Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88035-972 Florianópolis, SC, Brazil. Electronic address:

Environmental and nutritional factors are critical in modulating the immune system of Penaeus vannamei, particularly under viral threats such as white spot syndrome virus (WSSV). This study evaluated the effects of two Amazonian plant-based feed additives, buriti (Mauritia flexuosa) and pracaxi (Pentaclethra macroloba) brans, on shrimp immunocompetence, oxidative balance, and resistance to WSSV. Shrimp were fed diets supplemented with 4% or 8% of each ingredient.

View Article and Find Full Text PDF

NRAMP family in plants: Contribution to cadmium accumulation.

Biochim Biophys Acta Mol Cell Res

September 2025

University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:

The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).

View Article and Find Full Text PDF

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF