Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Droplet-based microfluidics with the characteristics of high throughput, low sample consumption, increasing reaction speed, and homogeneous volume control have been demonstrated as a useful platform for biomedical research and applications. The traditional fabrication methods of droplet microfluidics largely rely on expensive instruments, sophisticated operations, and even the requirement of an ultraclean room. In this manuscript, we present a 3D printing-based droplet microfluidic system with a specifically designed microstructure for droplet generation aimed at developing a more accessible and cost-effective method. The performance of droplet generation and the encapsulation capacity of the setup were examined. The device was further applied to measure the variation in cell viability over time and monitor the cell's blebbing activity to investigate its potential ability and feasibility for single-cell analysis. The result demonstrated that the produced droplets remained stable enough to enable the long-time detection of cell viability. Additionally, cell membrane protrusions featuring the life cycle of bleb initiation, expansion, and retraction can be well-observed. Three-dimensional printing-based droplet microfluidics benefit from the ease of manufacture, which is expected to simplify the fabrication of microfluidics and expand the application of the droplet approach in biomedical fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456440PMC
http://dx.doi.org/10.3390/mi14081521DOI Listing

Publication Analysis

Top Keywords

droplet microfluidic
8
blebbing activity
8
droplet microfluidics
8
printing-based droplet
8
droplet generation
8
cell viability
8
droplet
7
three-dimensional printing
4
printing enabled
4
enabled droplet
4

Similar Publications

Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.

View Article and Find Full Text PDF

An integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets.

View Article and Find Full Text PDF

Droplet Impact on a Superhydrophobic Surface at Low Weber Numbers.

Langmuir

September 2025

SERB Sponsered Microfluidics Laboratory, Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal 700032, India.

This study investigates the dynamic behavior of water droplets impacting a superhydrophobic surface (SHS) at low Weber numbers ( < 17). SHS is fabricated by a chemical coating process on magnesium AZ31 alloy. The surfaces exhibit a Cassie-Baxter wetting state, showing a contact angle of approximately 155°on the surfaces.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF

Patient-derived tumor organoids (PDTOs) are promising 3D disease models for developing personalized treatment methods. However, conventional technologies for making PDTOs have limitations such as batch-to-batch variation and low throughput. Droplet microfluidics (DM), which utilizes uniform droplets generated in microchannels, has demonstrated potential for creating organoids due to its high-throughput and controllable parameters.

View Article and Find Full Text PDF