Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to investigate the potential application of low-grade hard asphalt in high-temperature and high-altitude areas, various tests were conducted to analyze the performance and high-temperature rheological properties of 30#, 50#, and 70# matrix asphalt under thermo-oxidative aging and ultraviolet aging. The tests utilized for analysis included the examination of basic asphalt properties, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), gel permeation chromatography (GPC), dynamic shear rheology (DSR), and multi-stress creep recovery (MSCR). The results indicate a progressive decrease in asphalt performance with increasing aging time. Prolonged exposure to thermal oxygen aging and ultraviolet irradiation significantly diminishes the plasticity of asphalt. The carbonyl index and sulfoxide index of asphalt increase after thermal oxygen aging and ultraviolet aging. Notably, 30# asphalt demonstrates greater resistance to aging compared to 50# and 70# asphalt under long-term high ultraviolet radiation. The LMS% of 30#, 50#, and 70# asphalt increases by 14%, 15%, and 16%, respectively. Following photothermal oxidative aging, a larger proportion of lighter components in the asphalt transforms into resins and asphaltenes. The high-temperature rheological properties of the three types of asphalt rank as 30# > 50# > 70#, while within the same type of asphalt, the high-temperature rheological properties rank as PAV > UV3 > UV2 > UV1 > RTFOT > virgin. Elevating temperature, stress level, and stress duration negatively impact the high-temperature stability of asphalt. In general, low-grade asphalt demonstrates superior anti-aging ability and high-temperature rheological properties during the aging process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10456593PMC
http://dx.doi.org/10.3390/ma16165641DOI Listing

Publication Analysis

Top Keywords

high-temperature rheological
20
rheological properties
20
50# 70#
16
asphalt
15
30# 50#
12
aging ultraviolet
12
aging
9
low-grade hard
8
hard asphalt
8
asphalt high-temperature
8

Similar Publications

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

Hydrocolloids are effective in modulating the processing characteristics of native starches, with their efficacy depending on the structural properties of the colloid. This study focused on the effects of different Sanxan gum (SG) concentrations on multiple dimensions of Cyperus esculentus starch (CES), including viscosity, rheology, structural properties, and in vitro digestibility. Viscosity results indicated that SG reduced the peak temperature (70.

View Article and Find Full Text PDF

Municipal sludge, characterized by its high-water-content and viscous texture, poses significant environmental challenges due to inefficient dewatering and poor flowability. The freeze-thaw (F/T) method is an effective and environmentally friendly pretreatment approach. It is crucial to apply rheological analysis to examine the influence of refrigeration temperature on dewatering effects and to investigate the underlying mechanisms.

View Article and Find Full Text PDF

Impact of High-Dose Gamma Irradiation on PLA/PBAT Blends Reinforced with Cellulose Nanoparticles from Pineapple Leaves.

ACS Omega

August 2025

Universidade de São Paulo, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitária, São Paulo, SP BR 05508-900, Brazil.

Polylactic acid (PLA), a widely used biopolymer, faces limitations in melt strength and miscibility with poly-(butylene adipate--terephthalate) (PBAT), requiring compatibilization strategies. This study uniquely investigates the combined effects of high dose of gamma irradiation (80-150 kGy) and low-aspect-ratio cellulose nanoparticles (CNPs) on PLA/PBAT blends, aiming to enhance compatibility and mechanical performance. Gamma irradiation induced chain scission and radical formation, improving blend compatibility but reducing mechanical properties at high doses due to excessive chain scission.

View Article and Find Full Text PDF

Preparation of Surface-Porous PS Films with a Submicron-Scale Pore Size from a PS/PEG-THF Ternary Mixture Based on Ultrasonic Dispersion.

Langmuir

September 2025

College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.

A ternary polymer-solvent mixture has already been proposed to prepare surface porous films. However, the uncertainty of the formation mechanism of surface porous films and the multitude of influencing factors with unclear priorities lead to the failure to promote this method. Here, a surface-porous polystyrene (PS) film with a pore size of 0.

View Article and Find Full Text PDF