Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMβCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10452919PMC
http://dx.doi.org/10.3390/biom13081165DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
12
protein adsorption
8
hemocompatibility β-cyclodextrin-modified
4
β-cyclodextrin-modified methacryloyloxyethyl
4
methacryloyloxyethyl phosphorylcholine
4
phosphorylcholine coated
4
coated magnetic
4
nanoparticles adsorbing
4
adsorbing toxins
4
toxins blood
4

Similar Publications

Inorganic nanomaterial-based peroxidase mimics have recently emerged as promising alternatives to natural peroxidases for enhancing the detection sensitivity of bioassays, such as enzyme-linked immunosorbent assay (ELISA). Among them, magnetically active peroxidase mimics are particularly advantageous due to their ability to facilitate efficient separation and enrichment of target analytes. However, most reported magnetic peroxidase mimics suffer from limited catalytic efficiency and stability.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Ceric Ammonium Nitrate Immobilized on Linoleic Acid-Functionalized FeO Nanoparticles as a Magnetically Recyclable Catalyst for C3-Selective Formylation of N-H Indoles.

ACS Omega

September 2025

Creative Chemistry and Innovation Research Unit,Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand.

In this study, a novel magnetically recyclable catalyst was developed by immobilizing ceric ammonium nitrate (CAN) onto linoleic acid-functionalized magnetite nanoparticles (FeO-LA@CAN). The catalyst was thoroughly characterized using FT-IR, XRD, TEM, SEM-EDX, VSM, TGA, and N adsorption-desorption analyses. The catalytic efficiency of FeO-LA@CAN was evaluated in the C3-selective formylation of free (N-H) indole derivatives, exhibiting excellent activity and broad substrate scope.

View Article and Find Full Text PDF

Purpose: This study investigates the antibacterial and anticancer activity of previously reported iron oxide (FeO)-based nanoparticles (NPs) conjugated with chlorin e6 and folic acid (FCF) in photodynamic therapy (PDT) using a human bladder cancer (BC) (T-24) cell line and three bacterial strains.

Method: To investigate the potential applicability of the synthesized NPs as therapeutic agents for image-based photodynamic BC therapy, their photodynamic anticancer activity was analyzed and the mechanisms of cell death in T-24 cells treated with these NPs were assessed qualitatively and quantitatively through atomic absorption spectroscopy, fluorescence imaging, and transmission electron microscopy.

Results: The effective localization of FCF NPs in T-24 cells were confirmed, validating their excellent cellular fluorescence and magnetic resonance imaging capabilities.

View Article and Find Full Text PDF

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF