Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The emergence of insecticide resistance in vectors mosquitoes poses a real challenge for arboviral-borne disease control. In Côte d'Ivoire, data are available on phenotypic resistance and the presence of kdr mutations in . Therefore, information on metabolic resistance in populations is very scarce. Here, we assessed the insecticide resistance status of in periurban and rural areas of Côte d'Ivoire, and we investigated the role of detoxification enzymes as possible resistance mechanisms. mosquito eggs were collected between June 2019 to April 2021 in two agricultural sites. Adults of were tested using World Health Organization tube assays, with seven insecticides belonging to pyrethroids, organochlorines, carbamates, and organophosphates classes. We determined the knockdown times (KdT, KdT) and resistance ratios of pyrethroids in natural populations. The synergist piperonyl butoxide (PBO) was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed-function oxidase levels, nonspecific esterases (NSEs), and glutathione S-transferases. The results showed that populations were resistant to five insecticides with mortality of 46% and 89% for 0.75% permethrin, 68% and 92% for 0.05% deltamethrin, 57% and 89% for lambda-cyhalothrin, 41% and 47% for dichlorodiphenyltrichloroethane (DDT), 82% and 91% for chlorpyrifos-methyl in Songon-Agban and Kaforo, respectively. Susceptibility to carbamates was observed in our study sites. After exposure to PBO, the susceptibility of to pyrethroids and DDT was partially restored in Songon-Agban. Whereas in Kaforo, none increase of the mortality rates of for these four insecticides was observed after exposure to PBO. Increased activity of NSE (α-esterases) was found in Songon-Agban compared with the reference susceptible strain. These findings provide valuable information to support decisions for vector control strategies in Cote d'Ivoire. Also, we highlight the need for the monitoring of insecticide resistance management in vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1089/vbz.2022.0077DOI Listing

Publication Analysis

Top Keywords

insecticide resistance
16
côte d'ivoire
12
resistance
8
enzymes resistance
8
songon-agban kaforo
8
exposure pbo
8
insecticide
4
resistance metabolic
4
metabolic mechanisms
4
mechanisms agrosystems
4

Similar Publications

Background: Long-lasting insecticidal nets (LLINs) are the main vector control tools and remain protective against malaria, even in the presence of high pyrethroid resistance. However, in sub-Saharan Africa, the estimated percentage of the population sleeping under LLINs is low. Hence, this qualitative study was conducted to explore perceptions about LLINs and the reasons for low LLIN use in southern Ethiopia.

View Article and Find Full Text PDF

The fall armyworm (Spodoptera frugiperda, FAW) has developed varying degrees of resistance to chlorantraniliprole (CAP). Apoptosis serves as a critical defense mechanism against pesticide stress in insects. Here, we identified a juvenile hormone (JH)-mediated apoptotic pathway through RNA-seq, revealing nine JH-induced apoptosis-related genes (four positively correlated and five negatively correlated).

View Article and Find Full Text PDF

Molecular characterization of Spodoptera frugiperda nose resistant to fluoxetine protein 6 and its putative involvement in tolerance to cyantraniliprole.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Yangzhou University, Yangzhou 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:

Spodoptera frugiperda (FAW) is a notorious polyphagous pest that has developed resistance to various insecticides including diamide insecticides. Our previous study established a FAW cyantraniliprole-resistant (SfCYAN-R) strain by laboratory resistance selection of susceptible strain (SfCYAN-S), however, the potential resistance mechanisms of FAW to cyantraniliprole remain unclear. In this study, SfNrf6 encoding nose resistant to fluoxetine (Nrf) protein 6 was identified to be upregulated in SfCYAN-R strain compared with SfCYAN-S strain based on RNA-Seq data and RT-qPCR.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

Unravelling the novel mode of action of the spinosyn insecticides: A 25 year review.

Pestic Biochem Physiol

November 2025

Corteva Agriscience, Indianapolis, IN 46268, USA; Retired - Present address Agrilucent LLC, Morro Bay, CA 93442, USA.

Since their registration more than 25 years ago, the spinosyns have become a significant insect management tool in farmers' battles to protect crop quality and yield. Spinosad (Qalcova™ active) and spinetoram (Jemvelva™ active), the two members of the Insecticide Resistance Action Committee (IRAC) Group 5 nicotinic acetylcholine receptor (nAChR) allosteric modulators Site I, class of insecticides, have proven highly effective at controlling chewing insect pests on over 250 different crops. Their importance as an integral rotation partner in insect pest management programs has stimulated a large body of research into their mode of action (MoA) and mechanisms of resistance.

View Article and Find Full Text PDF