Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Domain switching is crucial for achieving desired functions in ferroic materials that are used in various applications. Fast control of domains at sub-nanosecond timescales remains a challenge despite its potential for high-speed operation in random-access memories, photonic, and nanoelectronic devices. Here, ultrafast laser excitation is shown to transiently melt and reconfigure ferroelectric stripe domains in multiferroic bismuth ferrite on a timescale faster than 100 picoseconds. This dynamic behavior is visualized by picosecond- and nanometer-resolved X-ray diffraction and time-resolved X-ray diffuse scattering. The disordering of stripe domains is attributed to the screening of depolarization fields by photogenerated carriers resulting in the formation of charged domain walls, as supported by phase-field simulations. Furthermore, the recovery of disordered domains exhibits subdiffusive growth on nanosecond timescales, with a non-equilibrium domain velocity reaching up to 10 m s . These findings present a new approach to image and manipulate ferroelectric domains on sub-nanosecond timescales, which can be further extended into other complex photoferroic systems to modulate their electronic, optical, and magnetic properties beyond gigahertz frequencies. This approach could pave the way for high-speed ferroelectric data storage and computing, and, more broadly, defines new approaches for visualizing the non-equilibrium dynamics of heterogeneous and disordered materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202306029DOI Listing

Publication Analysis

Top Keywords

ferroelectric domains
8
bismuth ferrite
8
domains sub-nanosecond
8
sub-nanosecond timescales
8
stripe domains
8
domains
6
sub-nanosecond reconfiguration
4
ferroelectric
4
reconfiguration ferroelectric
4
domains bismuth
4

Similar Publications

In this study, using a set of scanning probe microscopy techniques, we investigate the electronic properties of the domain walls in the layered ferroelectric semiconductor of the transition metal oxide dihalide family, NbOI. Although the uniaxial ferroelectricity of NbOI allows only 180° domain walls, the pristine 2D flakes, where polarization is aligned in-plane, typically exhibit a variety of as-grown domain patterns outlined by the electrically neutral and charged domain walls. The electrically biased probing tip can modify the as-grown domain structures.

View Article and Find Full Text PDF

Direct Deep-UV Second-Harmonic Generation in Disordered Χ-Modulated Ferroelectric Crystals.

Adv Mater

September 2025

Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.

The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.

View Article and Find Full Text PDF

MEMS and NEMS increasingly integrate multiple functions within compact platforms, enabled by piezoelectric and ferroelectric materials such as PZT, BaTiO, AlN, ScAlN, PVDF, and HfZrO. These materials support devices including mechanical sensors, RF resonators for gas detection, energy harvesters, non-volatile memories such as FeRAM and FeFETs, and neuromorphic computing arrays, as well as microspeakers and microphones for compact audio interfaces. They also play a key role in reconfigurable photonic components through acousto-optic and electro-optic modulation.

View Article and Find Full Text PDF

Bismuth-layered structure ferroelectrics (BLSFs), exemplified by CaBiTaO (CBTa), exhibit exceptional thermal stability at high temperatures with a high Curie temperature. This attribute renders them highly promising candidates for piezoelectric sensors, transducers, non-volatile ferroelectric memory, working in extreme environments. However, CBTa ceramic suffers from the following intrinsic limitations: spontaneous polarization confined within the -plane of the unit cell and a large coercive field, leading to severely suppressed piezoelectric activity ( ≈ 5.

View Article and Find Full Text PDF

The quest to develop energy-efficient and fast optoelectronic control of memory devices is essential. In this respect, ferroelectric materials are gaining tremendous importance in information and communication technology. Here, we demonstrate light-controlled polarisation switching on a subsecond timescale ( <500 ms) in a freestanding BaTiO membrane, which is nearly 1200 times faster than the previously reported response using a BaTiO thin film.

View Article and Find Full Text PDF