98%
921
2 minutes
20
The ever-increasing availability of genome sequencing data has revealed a substantial number of uncharacterized genes without known functions across various organisms. The first comprehensive genome sequencing of E. coli K12 revealed that more than 50% of its open reading frames corresponded to transcripts with no known functions. The group of protein-coding genes without a functional description and/or a recognized pathway, beginning with the letter "Y", is classified as the "y-ome". Several efforts have been made to elucidate the functions of these genes and to recognize their role in biological processes. This review provides a brief update on various strategies employed when studying the y-ome, such as high-throughput experimental approaches, comparative omics, metabolic engineering, gene expression analysis, and data integration techniques. Additionally, we highlight recent advancements in functional annotation methods, including the use of machine learning, network analysis, and functional genomics approaches. Novel approaches are required to produce more precise functional annotations across the genome to reduce the number of genes with unknown functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-023-04827-8 | DOI Listing |
Front Cell Infect Microbiol
September 2025
Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Introduction: leaves (FSL), a traditional Chinese ethnomedicinal herbal material used to prepare health-promoting infusions and pharmacologically noted for their robust anti-inflammatory, antioxidant, and broad-spectrum antiviral activities, nevertheless have an as-yet-uncharacterized molecular mechanism of action against human adenovirus (HAdV).
Methods: Ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive-Orbitrap/MS) was employed to identification of FSL components. Publicly available GEO datasets were mined to identify HAdV-associated differentially expressed genes (DEGs).
Biology (Basel)
August 2025
College of Advanced Agriculture Sciences, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
Fibrillins (FBNs) are indispensable for plant growth and development, orchestrating multiple physiological processes. However, the precise functional role of in cotton fiber development remains uncharacterized. This study reports a genome-wide characterization of the gene family in cotton.
View Article and Find Full Text PDFThe perianal skin is a unique "skin-gut" boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases.
View Article and Find Full Text PDFPlanta
September 2025
National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea.
OsWRKY113 functions as a negative regulator of rice immunity against Fusarium fujikuroi by attenuating jasmonic acid-mediated immune responses, unveiling its previously uncharacterized role within the OsWRKY transcription factor family. The fungal pathogen Fusarium fujikuroi is a major causal agent of bakanae disease in rice (Oryza sativa), a globally important staple crop. WRKY transcription factors are key regulators in the interaction between rice and this pathogen.
View Article and Find Full Text PDFPhytochemistry
September 2025
College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China. Electronic address:
Kenaf (Hibiscus cannabinus L.), an important bast fiber crop with strong abiotic stress tolerance, holds significant significance in the utilization of saline-alkali land and other marginal lands. Non-specific lipid transfer protein (nsLTPs) are key regulators of plant stress responses, yet their roles in kenaf and the underlying molecular mechanisms remain uncharacterized.
View Article and Find Full Text PDF