98%
921
2 minutes
20
Flexible covalent organic frameworks (COFs) have been studied for applications containing sorption, selective separation, and catalysis. How to correlate the microscopic structure with flexibility in COFs is a great challenge. Herein, we visually track the flexible deformation behaviors of single COF-300 and COF-300-AR particles in response to solvent vapour guests with dark-field microscopy (DFM) in an in operando manner. COF-300-AR with freely-rotating C-N single bonds are synthesized by the reduction of imine-based COF-300 consisting of rigid C=N double bonds without changing topological structure and crystallinity. Unexpectedly, we observe that the flexible deformation of COF-300 is extremely higher than that of COF-300-AR despite it bears many C-N single bonds, clearly illustrating the apparent flexibility decrease of COF-300 after reduction. The high spatiotemporal resolution of DFM enables the finding of inter-particle variations of the flexibility among COF-300 crystals. Experimental characterizations by variable-temperature X-ray diffraction and infrared spectroscopy as well as theoretical calculations demonstrate that the flexible deformation of COF-300 is ascribed to the pedal motion around rigid C=N double bonds. These observations provide new insights into COF flexibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442449 | PMC |
http://dx.doi.org/10.1038/s41467-023-40831-8 | DOI Listing |
J Am Chem Soc
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
CO electroreduction to produce fuels and chemicals is of great significance. Molecular catalysts offer valuable advantages in light of their well-defined active sites and tunable structural and electronic properties. However, their stability is often compromised by rigid conjugated structures.
View Article and Find Full Text PDFACS Nano
September 2025
State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China.
A novel structure of a piezoelectric stick-slip actuator is proposed, which is based on the moving posture of a monkey. The biomimetic monkey type of piezoelectric stick-slip actuator (BMPSSA) is designed to simulate the limbs and tail of a moving monkey. By using the pseudo-rigid body method, the deformation model of the compliant mechanism is established.
View Article and Find Full Text PDFTher Adv Hematol
September 2025
Department of Hematology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong 266000, China.
Myelodysplastic syndromes (MDS), particularly in older adults aged 60 years and above, present significant therapeutic challenges due to poor prognosis and limited treatment options. Higher-risk MDS (HR-MDS), defined by the Revised International Prognostic Scoring System score of ⩾3.5, is characterized by increased myeloblasts, severe cytopenia, and a median survival of <2 years.
View Article and Find Full Text PDFNanotechnology
September 2025
State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry and Chemical Engineering, Sun Yat-Sen University, No 135, XinGangXi Road, Guangzhou 510275, guangzhou, 510275, CHINA.
Silicon carbide nanowires (SiC NWs) combine the benefits of bulk SiC materials with the properties of low-dimensional nanomaterials. They are known for their excellent mechanical strength and durability, which are critical for their potential applications in high-stress environments and micro-nano functional systems. Here, the mechanical properties and deformation mechanisms of 2H-SiC NWs with rare defects in the [0001] orientation are reported.
View Article and Find Full Text PDF