Performance limit of all-wrapped monolayer MoS transistors.

Sci Bull (Beijing)

School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China. Electronic address:

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

All-wrapped transistors consisting of two-dimensional transition-metal dichalcogenide channels are appealing candidates for post-silicon electronics. Based on the Boltzmann transport theory, here we report a comprehensive theoretical survey on the performance limits for monolayer MoS transistors with three prototypical gate dielectrics (AlO, HfO and BN), by including primary extrinsic charge scattering mechanisms present in practical devices. A concept of "dead space" between the dielectrics and channels is proposed and used in calculation to ameliorate the general overestimation in scattering intensity of surface optical phonons, which enables an accurate description of electronic transport behavior. Crucial device indices, including charge mobility and current density, are thoroughly analyzed for transistors at post-silicon technological nodes beyond 1 nm. The on-state current is estimated to be generally greater than 2 mA μm at channel lengths below 10 nm. The results clarify the potential benefits in performance from extremely miniaturized monolayer-channel transistors for More-Moore electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.08.014DOI Listing

Publication Analysis

Top Keywords

monolayer mos
8
mos transistors
8
transistors
5
performance limit
4
limit all-wrapped
4
all-wrapped monolayer
4
transistors all-wrapped
4
all-wrapped transistors
4
transistors consisting
4
consisting two-dimensional
4

Similar Publications

Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.

View Article and Find Full Text PDF

Growth of highly uniform 2-inch MoS wafers using liquid precursor spraying.

Nanoscale

September 2025

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.

With the progress of study, MoS has been proven to show excellent properties in electronics and optoelectronics, which promotes the fabrication of future novel integrated circuits and photodetectors. However, highly uniform wafer-scale growth is still in its early stage, especially regarding how to control the precursor and its distribution. Herein, we propose a new method, spraying the Mo precursor, which is proven to fabricate highly uniform 2-inch monolayer MoS wafers.

View Article and Find Full Text PDF

Due to its sizable direct bandgap and strong light-matter interactions, the preparation of monolayer MoS has attracted significant attention and intensive research efforts. However, multilayer MoS is largely overlooked because of its optically inactive indirect bandgap caused by interlayer coupling. It is highly desirable to modulate and decrease the interlayer coupling so that each layer in multilayer MoS can exhibit a monolayer-like direct-gap behavior.

View Article and Find Full Text PDF

Two-dimensional ferroelectric tunnel junctions (2D FTJs) have attracted extensive attention in recent years, which mainly change the height of the tunnel barrier via manipulation of the ferroelectric polarization. However, it is very challenging to realize the high tunneling electroresistance (TER) of FTJs based on the barrier height. Here, we report the 2D FTJs using a unique structure with semiconducting MoS/α-InSe/monolayer graphene, where ferroelectric polarization of α-InSe shifts the barrier height by 1.

View Article and Find Full Text PDF

Two-dimensional ferroelectrics with large out-of-plane polarization (OOP) are promising for the design of low-power memory and logic devices, but their experimental realization remains limited due to the scarcity of homobilayers and the complexity of heterobilayers. Here, we perform high-throughput screening of 24,960 configurations and identify 43 semiconducting heterobilayer ferroelectrics with an OOP exceeding the experimentally reported value in MoS/WS while maintaining sliding barriers below 100 meV/f.u.

View Article and Find Full Text PDF