98%
921
2 minutes
20
Coagulation factor X (FX) deficiency causes severe hemorrhagic symptoms. We herein report a 90-year-old man with hemorrhagic symptoms and prolongation of prothrombin time (PT) and activated partial thromboplastin time (APTT). Cross-mixing tests showed a factor deficiency pattern, but administration of plasma products was not effective. Acquired coagulation factor deficiency was suspected, and immunosuppressive therapy was started. After the intervention, his hemorrhagic symptoms improved. A decrease in FX activity was later confirmed, and anti-FX autoantibody was retrospectively detected by an enzyme-linked immunosorbent assay. Immediate intervention is important for patients suspected of having acquired coagulation factor deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484778 | PMC |
http://dx.doi.org/10.2169/internalmedicine.0849-22 | DOI Listing |
Blood
September 2025
The University of Chicago, Chicago, Illinois, United States.
Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).
View Article and Find Full Text PDFBlood
September 2025
University of Illinois at Chicago, Chicago, Illinois, United States.
Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs.
View Article and Find Full Text PDFPLoS Pathog
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
Hepatocyte nuclear factor 4 alpha (Hnf4α), a conserved nuclear receptor central to vertebrate liver development and metabolic regulation, emerges here as a pivotal immune regulator in teleosts against complex infectious threats. While its metabolic roles are well-established, Hnf4α's function in bacterial infection, viral infection, and bacterial-viral coinfection-major challenges in global aquaculture-remained uncharacterized. This study reveals that teleost Hnf4α acts as a dual-functional immune checkpoint, essential for combating Aeromonas salmonicida, grass carp reovirus (GCRV), and their coinfection.
View Article and Find Full Text PDFPLoS Biol
September 2025
Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a broad spectrum of physical and cognitive impairments. Myeloid cells within the CNS, including microglia and border-associated macrophages, play a central role in the neuroinflammatory processes associated with MS. Activation of these cells contributes to the local inflammatory response and promotes the recruitment of additional immune cells into the CNS.
View Article and Find Full Text PDFCleft Palate Craniofac J
September 2025
School and Hospital of Stomatology, Zunyi Medical University, Zunyi, China.
ObjectiveTo investigate the effects of zinc concentration on palatal development in fetal mice and its association with the aryl hydrocarbon receptor (AhR) signaling pathway.MethodsPregnant C57BL/6J mice were fed diets with varying zinc concentrations and randomly divided into a zinc-rich (ZR) group, a normal-zinc (NZ) group, and a zinc-deficient (ZD) group. Embryonic development was observed, and the expression levels of AhR signaling pathway-related factors were examined.
View Article and Find Full Text PDF