Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown.

Methods: By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial.

Results: We found that higher tumor mutation burden, mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9/CXCR3 macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy.

Conclusions: This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10432632PMC
http://dx.doi.org/10.1136/jitc-2023-007106DOI Listing

Publication Analysis

Top Keywords

molecular landscape
8
advanced hepatocellular
8
hepatocellular carcinoma
8
combination therapy
8
molecular changes
8
multimodal molecular
4
response
4
landscape response
4
response y90-resin
4
y90-resin microsphere
4

Similar Publications

Background: The rapid advancement of next-generation sequencing has significantly expanded the landscape of precision medicine. However, health care professionals face increasing challenges in keeping pace with the growing body of oncological knowledge and integrating it effectively into clinical workflows. Precision oncology decision support (PODS) tools aim to assist clinicians in navigating this complexity, yet their current functionalities only partially address clinical needs.

View Article and Find Full Text PDF

Ovulation is an intricate process that is essential for reproductive success. In , ovulation increases after mating. This increase is initiated by the male seminal fluid protein ovulin and is executed by female pathways, including octopamine (OA) neuronal signaling.

View Article and Find Full Text PDF

The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.

View Article and Find Full Text PDF

Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).

View Article and Find Full Text PDF

The short lifespan of polymorphonuclear neutrophils (PMNs) in vitro poses challenges, as their limited viability restricts functional assays and experimental manipulations. The HL-60 cell line serves as a valuable model for neutrophil-like differentiation, yet the functional relevance of ATRA- and DMSO-induced differentiation remains incompletely understood. In the present study, we aimed to characterize the differentiation potential of all-trans retinoic acid (ATRA) and dimethyl sulfoxide (DMSO) on HL-60 cells and compare their functionality with primary PMNs.

View Article and Find Full Text PDF