98%
921
2 minutes
20
Inadequate remnant volume and regenerative ability of the liver pose life-threatening risks to patients after partial liver transplantation (PLT) or partial hepatectomy (PHx), while few clinical treatments focus on safely accelerating regeneration. Recently, we discovered that supplementing 5-aminolevulinate (5-ALA) improves liver cold adaptation and functional recovery, leading us to uncover a correlation between 5-ALA metabolic activities and post-PLT recovery. In a mouse 2/3 PHx model, 5-ALA supplements enhanced liver regeneration, promoting infiltration and polarization of anti-inflammatory macrophages via P53 signaling. Intriguingly, chemokine receptor CX3CR1 functions to counterbalance these effects. Genetic ablation or pharmacological inhibition of CX3CR1 (AZD8797; phase II trial candidate) augmented the macrophagic production of insulin-like growth factor 1 (IGF-1) and subsequent hepatocyte growth factor (HGF) production by hepatic stellate cells. Thus, short-term treatments with both 5-ALA and AZD8797 demonstrated pro-regeneration outcomes superior to 5-ALA-only treatments in mice after PHx. Overall, our findings may inspire safe and effective strategies to better treat PLT and PHx patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2023.112984 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.
View Article and Find Full Text PDFBrain
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Provincial Key Laboratory of Non-human Primate Research, Guangdong-Hong Kong-Macau Institute of CNS Rege
Abnormal accumulation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Small interfering RNAs (siRNAs) targeting TDP-43 offer potential therapeutic strategies for these diseases. However, efficient and safe delivery of siRNAs to the central nervous system (CNS) remains a critical challenge.
View Article and Find Full Text PDFJ Hepatol
September 2025
Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLife), University of Helsinki, Helsinki, Finland; Department of Internal Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, He
Am J Pathol
September 2025
Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Res
Aldehyde dehydrogenase 2 (ALDH2) is a critical enzyme involved in the detoxification of acetaldehyde. Although numerous studies have demonstrated the significance of ALDH2 in alcohol-associated liver disease (ALD), its role in alcohol-induced activation of liver progenitor cells (LPCs) has not been thoroughly investigated. Proteomic analysis of serum samples from patients with either normal ALDH2 genotype or ALDH2 mutation following alcohol consumption revealed that ALDH2 deficiency may suppress LPC proliferation.
View Article and Find Full Text PDFCurr Med Imaging
August 2025
Department of Surgery, Gachon University Gil Medical Center, Incheon, Republic of Korea.
Introduction: Accurate liver volumetry is crucial for hepatectomy. In this study, we developed and validated a deep learning system for automated liver volumetry in patients undergoing hepatectomy, both preoperatively and at 7 days and 3 months postoperatively.
Methods: A 3D U-Net model was trained on CT images from three time points using a five-fold cross-validation approach.