98%
921
2 minutes
20
Studying interfacial charge transfer is of great significance for the preparation of electrocatalysts with high activity for the hydrogen evolution reaction (HER). Particularly, exploring the in-depth catalytic mechanisms and facile fabrication methods of narrow bandgap metal phosphides remains worthwhile. This work successfully combined catalytically inert n-type NbO with p-type CoP to prepare a p-n heterojunction (CoP-NbO). The self-supporting heterojunction was fabricated by gas-phase phosphorization of the Co(OH)-NbO precursor obtained through hydrothermal-electrodeposition strategy. By analyzing the electronic and band structures of CoP and NbO, it was found that there exists a built-in electric field (BEF) in the heterojunction. This BEF can modulate the electronic structure of CoP at the interface, enhance its intrinsic activity and accelerate charge migration. The subsequent experimental results also demonstrate that NbO can significantly enhance the activity and stability of CoP. Our findings can serve as a novel perspective on the application of p-n heterojunction in the field of energy storage and conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.08.032 | DOI Listing |
ACS Nano
September 2025
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.
Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.
View Article and Find Full Text PDFMikrochim Acta
September 2025
School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
A CuFeO/NiCo-LDH heterojunction electrochemical sensor (LDH: layered double hydroxide) was developed for the sensitive detection of tetracycline (TC). The sensor was constructed by integrating ZIF-67-derived nanocage NiCo-LDH on nickel foam with CuFeO, forming a p-n heterojunction that enhanced electron transfer and TC adsorption. The sensor exhibited bilinear detection ranges (0.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
School of Chemistry and Chemical Engineering, NanChang University, NanChang, Jiangxi, 330031, P. R. China.
Photocatalytic antibacterial therapy is a promising method for wound disinfection and treatment. However, the weak photocatalytic antibacterial activity of ZnO stimulated by visible light limits its applications. In this study, porous CuO@ZnO heterojunctions with enhanced visible light response are successfully synthesized by coupling ZnO and CuO using a one-pot water bath method.
View Article and Find Full Text PDFACS Sens
September 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
Chemiresistive gas sensors have emerged as a promising technology for gas detection, due to their real-time response, low costs, high sensitivity, excellent stability, and facile fabrication. However, the full realization of their potential is currently constrained by the scarcity of sensing materials capable of delivering high selectivity and ultrafast response. In this study, we prepared a three-dimensional inverse opal macroporous SnO doped with NiO (3DIO NiO-SnO).
View Article and Find Full Text PDF