Protein-ligand binding affinity prediction exploiting sequence constituent homology.

Bioinformatics

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures. The evaluation of such methods has mainly been carried out using datasets from PDBbind. Particularly the Comparative Assessment of Scoring Functions (CASF) 2007, 2013, and 2016 datasets with dedicated test sets. This work demonstrates that only a small number of simple descriptors is necessary to efficiently estimate binding affinity for these complexes without the need to know the exact binding conformation of a ligand.

Results: The developed approach of using a small number of ligand and protein descriptors in conjunction with gradient boosting trees demonstrates high performance on the CASF datasets. This includes the commonly used benchmark CASF2016 where it appears to perform better than any other approach. This methodology is also useful for datasets where the spatial relationship between the ligand and protein is unknown as demonstrated using a large ChEMBL-derived dataset.

Availability And Implementation: Code and data uploaded to https://github.com/abbiAR/PLBAffinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463547PMC
http://dx.doi.org/10.1093/bioinformatics/btad502DOI Listing

Publication Analysis

Top Keywords

binding affinity
8
small number
8
ligand protein
8
protein-ligand binding
4
affinity prediction
4
prediction exploiting
4
exploiting sequence
4
sequence constituent
4
constituent homology
4
homology motivation
4

Similar Publications

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

To evaluate the efficacy and explore the potential mechanism of curcumin for the treatment and prevention of NSCLC. We searched six databases thoroughly for articles published before December 2024. Stata 15.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Nuclear migration plays a fundamental role in development, requiring precise spatiotemporal control of bidirectional movement through dynein and kinesin motors. Here, we uncover a differential isoform-dependent mechanism for developmental regulation of nuclear migration directionality. The nuclear envelope Klarsicht/ANC-1/Syne homology (KASH) protein UNC-83 in Caenorhabditis elegans exists in multiple isoforms that differentially control motor activity to achieve tissue-specific nuclear positioning.

View Article and Find Full Text PDF