Tda1p is a protein kinase in Saccharomyces cerevisiae. Here we investigate the function of TDA1 during the diauxic shift using transcriptomics. We compared the gene expression in the deletion mutant tda1∆ and the reference strain (BY4741) during both the aerobic fermentation phase (log phase), and the respiratory phase (post-diauxic shift phase, PDS) in three separate independent experiments.
View Article and Find Full Text PDFThe concept of personalised medicine in cancer therapy is becoming increasingly important. There already exist drugs administered specifically for patients with tumours presenting well-defined genetic mutations. However, the field is still in its infancy, and personalised treatments are far from being standard of care.
View Article and Find Full Text PDFIn early-stage drug design, machine learning models often rely on compressed representations of data, where raw experimental results are distilled into a single metric per molecule through curve fitting. This process discards valuable information about the quality of the curve fit. In this study, we incorporated a fit-quality metric into machine learning models to capture the reliability of metrics for individual molecules.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches.
View Article and Find Full Text PDFThe enzyme deoxyhypusine synthase (DHS) catalyzes the first step in the post-translational modification of the eukaryotic translation factor 5A (eIF5A). This is the only protein known to contain the amino acid hypusine, which results from this modification. Both eIF5A and DHS are essential for cell viability in eukaryotes, and inhibiting DHS is a promising strategy to develop new therapeutic alternatives.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to cause severe disease and deaths in many parts of the world, despite massive vaccination efforts. Antiviral drugs to curb an ongoing infection remain a priority. The virus-encoded 3C-like main protease (MPro; nsp5) is seen as a promising target.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
March 2024
Automation is dramatically changing the nature of laboratory life science. Robotic lab hardware that can perform manual operations with greater speed, endurance, and reproducibility opens an avenue for faster scientific discovery with less time spent on laborious repetitive tasks. A major bottleneck remains in integrating cutting-edge laboratory equipment into automated workflows, notably specialized analytical equipment, which is designed for human usage.
View Article and Find Full Text PDFBioinformatics
February 2024
Motivation: Proteomic profiles reflect the functional readout of the physiological state of an organism. An increased understanding of what controls and defines protein abundances is of high scientific interest. Saccharomyces cerevisiae is a well-studied model organism, and there is a large amount of structured knowledge on yeast systems biology in databases such as the Saccharomyces Genome Database, and highly curated genome-scale metabolic models like Yeast8.
View Article and Find Full Text PDFBioinform Adv
August 2023
Summary: Artificial intelligence (AI)-driven laboratory automation-combining robotic labware and autonomous software agents-is a powerful trend in modern biology. We developed Genesis-DB, a database system designed to support AI-driven autonomous laboratories by providing software agents access to large quantities of structured domain information. In addition, we present a new ontology for modeling data and metadata from autonomously performed yeast microchemostat cultivations in the framework of the Genesis robot scientist system.
View Article and Find Full Text PDFBioinformatics
August 2023
Motivation: Molecular docking is a commonly used approach for estimating binding conformations and their resultant binding affinities. Machine learning has been successfully deployed to enhance such affinity estimations. Many methods of varying complexity have been developed making use of some or all the spatial and categorical information available in these structures.
View Article and Find Full Text PDFNPJ Syst Biol Appl
April 2023
Saccharomyces cerevisiae is a very well studied organism, yet ∼20% of its proteins remain poorly characterized. Moreover, recent studies seem to indicate that the pace of functional discovery is slow. Previous work has implied that the most probable path forward is via not only automation but fully autonomous systems in which active learning is applied to guide high-throughput experimentation.
View Article and Find Full Text PDFBMC Bioinformatics
August 2022
Background: A key problem in bioinformatics is that of predicting gene expression levels. There are two broad approaches: use of mechanistic models that aim to directly simulate the underlying biology, and use of machine learning (ML) to empirically predict expression levels from descriptors of the experiments. There are advantages and disadvantages to both approaches: mechanistic models more directly reflect the underlying biological causation, but do not directly utilize the available empirical data; while ML methods do not fully utilize existing biological knowledge.
View Article and Find Full Text PDFThe representation of the protein-ligand complexes used in building machine learning models play an important role in the accuracy of binding affinity prediction. The Extended Connectivity Interaction Features (ECIF) is one such representation. We report that (i) including the discretized distances between protein-ligand atom pairs in the ECIF scheme improves predictive accuracy, and (ii) in an evaluation using gradient boosted trees, we found that the resampling method used in selecting the best hyperparameters has a strong effect on predictive performance, especially for benchmarking purposes.
View Article and Find Full Text PDFJ R Soc Interface
April 2022
Scientific results should not just be 'repeatable' (replicable in the same laboratory under identical conditions), but also 'reproducible' (replicable in other laboratories under similar conditions). Results should also, if possible, be 'robust' (replicable under a wide range of conditions). The reproducibility and robustness of only a small fraction of published biomedical results has been tested; furthermore, when reproducibility is tested, it is often not found.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
Almost all machine learning (ML) is based on representing examples using intrinsic features. When there are multiple related ML problems (tasks), it is possible to transform these features into extrinsic features by first training ML models on other tasks and letting them each make predictions for each example of the new task, yielding a novel representation. We call this transformational ML (TML).
View Article and Find Full Text PDFIn phenotype prediction the physical characteristics of an organism are predicted from knowledge of its genotype and environment. Such studies, often called genome-wide association studies, are of the highest societal importance, as they are of central importance to medicine, crop-breeding, etc. We investigated three phenotype prediction problems: one simple and clean (yeast), and the other two complex and real-world (rice and wheat).
View Article and Find Full Text PDFThe goal of quantitative structure activity relationship (QSAR) learning is to learn a function that, given the structure of a small molecule (a potential drug), outputs the predicted activity of the compound. We employed multi-task learning (MTL) to exploit commonalities in drug targets and assays. We used datasets containing curated records about the activity of specific compounds on drug targets provided by ChEMBL.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2019
One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast () diauxic shift.
View Article and Find Full Text PDFMalaria, caused by parasites of the genus Plasmodium, leads to over half a million deaths per year, 90% of which are caused by Plasmodium falciparum. P. vivax usually causes milder forms of malaria; however, P.
View Article and Find Full Text PDFWe investigate the learning of quantitative structure activity relationships (QSARs) as a case-study of meta-learning. This application area is of the highest societal importance, as it is a key step in the development of new medicines. The standard QSAR learning problem is: given a target (usually a protein) and a set of chemical compounds (small molecules) with associated bioactivities (e.
View Article and Find Full Text PDFThe theory of computer science is based around universal Turing machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of classical UTMs. For the most important class of problem in computer science, non-deterministic polynomial complete problems, non-deterministic UTMs (NUTMs) are theoretically exponentially faster than both classical UTMs and quantum mechanical UTMs (QUTMs).
View Article and Find Full Text PDFFront Plant Sci
February 2016
Perennial ryegrass (Lolium perenne L.) is one of the most widely grown forage grasses in temperate agriculture. In order to maintain and increase its usage as forage in livestock agriculture, there is a continued need for improvement in biomass yield, quality, disease resistance, and seed yield.
View Article and Find Full Text PDF