98%
921
2 minutes
20
Motivation: Proteomic profiles reflect the functional readout of the physiological state of an organism. An increased understanding of what controls and defines protein abundances is of high scientific interest. Saccharomyces cerevisiae is a well-studied model organism, and there is a large amount of structured knowledge on yeast systems biology in databases such as the Saccharomyces Genome Database, and highly curated genome-scale metabolic models like Yeast8. These datasets, the result of decades of experiments, are abundant in information, and adhere to semantically meaningful ontologies.
Results: By representing this knowledge in an expressive Datalog database we generated data descriptors using relational learning that, when combined with supervised machine learning, enables us to predict protein abundances in an explainable manner. We learnt predictive relationships between protein abundances, function and phenotype; such as α-amino acid accumulations and deviations in chronological lifespan. We further demonstrate the power of this methodology on the proteins His4 and Ilv2, connecting qualitative biological concepts to quantified abundances.
Availability And Implementation: All data and processing scripts are available at the following Github repository: https://github.com/DanielBrunnsaker/ProtPredict.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10868306 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btae050 | DOI Listing |
Commun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
GFZ Helmholtz Centre for Geosciences, Potsdam, Germany.
Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.
View Article and Find Full Text PDFOpen Biol
September 2025
National Brain Research Centre, Manesar, Haryana, India.
E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.
View Article and Find Full Text PDFBioresour Technol
September 2025
School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China; Institute o
Elevated expense of chemical media spurs a shift to non-chemical media in microalgal cultivation, while ensuring the safety of the resulting powder poses a challenge. No previous studies have evaluated the safety and application of Spirulina subsalsa powder cultivated in monosodium glutamate wastewater (MSGW) and seawater. In this study, an analysis of basic nutritional components in Spirulina subsalsa powder indicated that this algal powder had high protein content, low lipid content and rich mineral content.
View Article and Find Full Text PDFInt J Food Microbiol
September 2025
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China. Electronic address:
Raw milk is commonly stored at 4 °C prior to processing, a practice that can facilitate psychrotrophic proliferation, and milk physicochemical alterations and quality deterioration. This study aimed to elucidate the dynamic changes and interrelationships among microbiota, physicochemical parameters, and metabolite profiles in raw bovine and goat milk during refrigerated storage at 4 °C over a 5-day period. The results showed that both bovine and goat milk exhibited significant increases in bacterial counts, titratable acidity, zeta potential, and protein particle size, alongside decreases in pH and lipid particle size, as well as changes in color during refrigerated storage at 4 °C.
View Article and Find Full Text PDF