98%
921
2 minutes
20
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), a kind of adult stem cell, were studied for clinical applications in regenerative medicine. To date, the safety evaluations of intravenous infusion of allogeneic hUC-MSCs were focused on fever, infection, malignancy, and death. However, the characteristics of dynamical changes in vital signs during hUC-MSCs infusion are largely unknown. In this study, twenty participants with allogeneic hUC-MSCs transplanted (MSC group) and twenty sex- and age-matched individuals with cardiovascular disease who treated with the equal volume of 0.9% normal saline were recruited (NS group). Heart rate, respiratory rate, oxygen saturation, systolic and diastolic blood pressure, and temperature were monitored at intervals of 15 min during infusion. Adverse events were recorded during infusion and within seven days after infusion. No adverse events were observed during and after infusion in both groups. Compared with the baseline, the mean systolic blood pressure (SBP) levels were significantly decreased at 15 min, 30 min, 45 min and 60 min in the MSC group (all < 0.05) during infusion. In addition, SBP changed significantly from baseline during hUC-MSCs infusion when compared with that of NS group ( < 0.05). Repeated measures analysis of variance confirmed difference over time on the SBP levels ( < 0.05). Our results showed that the process of allogeneic hUC-MSCs intravenous infusion was safe and the vital signs were stable, whereas a slight decrease in SBP was observed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10407816 | PMC |
http://dx.doi.org/10.1016/j.reth.2023.07.007 | DOI Listing |
FEMS Microbiol Ecol
September 2025
School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, New Zealand, 1142.
The relationship between, and joint selection on, a host and its microbes-the holobiont-can impact evolutionary and ecological outcomes of the host and its microbial community. We develop an agent-based modelling framework for understanding the ecological dynamics of hosts and their microbiomes. Our model incorporates numerous microbial generations per host generation allowing selection on both host and microbes.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
School of Science, RMIT University, Melbourne 3000, Australia.
Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.
View Article and Find Full Text PDFVestn Oftalmol
September 2025
Korolev Samara National Research University, Samara, Russia.
Objective: This study evaluated the outcomes of a 36-month follow-up after treatment with the ELLEX 2RT nanosecond laser.
Material And Methods: The study included 72 patients divided into two groups. Group 1 received 2RT nanosecond laser therapy, while group 2 did not undergo laser treatment.
Chaos
September 2025
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.
In this paper, we propose a general latent HIV infection model with general incidence and three distributed delays. We start with the analysis of the proposed model by establishing the positivity and boundedness of solutions and calculating basic reproduction number R0. Then, we show that the infection-free equilibrium is globally asymptotically stable when R0<1 (is globally attractive when R0=1), while the disease is uniformly persistent when R0>1.
View Article and Find Full Text PDFJ Antimicrob Chemother
September 2025
Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA.
Background: Synergy between antibiotic pairs is typically discovered using chequerboard assays that assume uniform, static drug exposure; however, such conditions rarely apply in vivo. Dynamic and heterogeneous tissue environments create spatial and temporal mismatches in drug exposure that can uncouple synergistic interactions, leading to unexpected treatment failure.
Objective: This study aims to develop a physiologically relevant in vitro model that integrates infection-site microenvironments and drug-specific pharmacokinetics.