Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glaucoma remains a leading cause of blindness globally. Minimally invasive treatment techniques are rapidly expanding the availability of therapeutic options for glaucoma. These include devices aimed at enhancing outflow through the subconjunctival space, Schlemm's canal, and suprachoroidal space, sustained-release drug delivery devices, and extraocular devices aiming to reduce glaucomatous progression through other novel means. In this review, we provide an overview of several novel devices either newly available or in development for the medical and surgical management of glaucoma. Further studies are required to determine the long-term efficacy of these devices and how they will integrate into the current landscape of glaucoma management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441989PMC
http://dx.doi.org/10.1007/s40123-023-00780-3DOI Listing

Publication Analysis

Top Keywords

devices
6
devices glaucoma
4
glaucoma
4
glaucoma glaucoma
4
glaucoma remains
4
remains leading
4
leading blindness
4
blindness globally
4
globally minimally
4
minimally invasive
4

Similar Publications

All-In-One Iontronic Sensing Aligner for High-Precision 3D Orthodontic Force Monitoring.

Adv Sci (Weinh)

September 2025

Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key

Clear aligners offer aesthetic and comfort advantages in orthodontics, yet their ability to deliver effective forces relies heavily on empirical judgment or large-scale optical scanning, lacking real-time quantitative evaluation. Integrating pressure sensors into aligners is a promising solution, but challenges in miniaturization, multi-dimensional sensing, measurement accuracy, and biocompatibility hinder clinical application. Here, an all-in-one Orthodontic Force Acquisition System (OFAS) is presented that enables real-time, 3D force monitoring using a cross-shaped iontronic sensing array and an origami-inspired, wireless battery-free readout circuit miniaturized for single-tooth placement.

View Article and Find Full Text PDF

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

Self-Transformation of 2D SnSe Nanosheets into SnO/Se Nanocomposites for Efficient Photodetection.

ACS Appl Mater Interfaces

September 2025

School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong518055, China.

The rapid development of liquid exfoliation technology has boosted fundamental research and applications of ultrathin two-dimensional (2D) materials. However, the small-sized exfoliated 2D materials with a high specific surface area may exhibit poor chemical stability. Understanding the stability of 2D crystals will be significant for their preservation and service and for the development of new stable phases via the spontaneous transition from unstable structures.

View Article and Find Full Text PDF

Donor-derived cell-free DNA (dd-cfDNA) has emerged as a valuable noninvasive biomarker for detecting allograft injury in solid organ transplantation. It is released into the bloodstream from the transplanted organ as a result of cell injury and immune activation, with baseline levels influenced by organ type, tissue turnover, and posttransplant physiological changes. Several analytical platforms are available, including quantitative polymerase chain reaction (PCR), digital droplet PCR, and next-generation sequencing, each differing in sensitivity, throughput, and reporting format.

View Article and Find Full Text PDF