98%
921
2 minutes
20
It is a challenging task to utilize efficient electrocatalytic metal hydroxide-based materials for the oxygen evolution reaction (OER) in order to produce clean hydrogen energy through water splitting, primarily due to the restricted availability of active sites and the undesirably high adsorption energies of oxygenated species. To address these challenges simultaneously, we intentionally engineer a hollow star-shaped Ag/CoMo-LDH heterostructure as a highly efficient electrocatalytic system. This design incorporates a considerable number of heterointerfaces between evenly dispersed Ag nanoparticles and CoMo-LDH nanosheets. The heterojunction materials have been prepared using self-assembly, in situ transformation, and spontaneous redox processes. The nanosheet-integrated hollow architecture can prevent active entities from agglomeration and facilitate mass transportation, enabling the constant exposure of active sites. Specifically, the powerful electronic interaction within the heterojunction can successfully regulate the Co/Co ratio and the d-band center, resulting in rational optimization of the adsorption and desorption of the intermediates on the site. Benefiting from its well-defined multifunctional structures, the Ag0.4/CoMo-LDH with optimal Ag loading exhibits impressive OER activity, the overpotential being 290 mV to reach a 10 mA cm current density. The present study sheds some new insights into the electron structure modulation of hollow heterostructures toward rationally designing electrocatalytic materials for the OER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c01628 | DOI Listing |
ACS Nano
September 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.
View Article and Find Full Text PDFInorg Chem
September 2025
College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materia
Conventional acid-catalyzed acetalization faces significant challenges in catalyst recovery and poses environmental concerns. Herein, we develop a CeO-supported Pd single-atom catalyst (Pd/CeO) that eliminates the reliance on liquid acids by creating a localized H-rich microenvironment through heterolytic H activation. X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses confirm the atomic dispersion of Pd via Pd-O-Ce coordination, while density functional theory (DFT) calculations reveal strong metal-support interactions (SMSI) that facilitate electron transfer from CeO oxygen to Pd, downshifting the Pd d-band center and optimizing H activation.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
The MOF-derived Pd-CeO/NC catalyst exhibited enhanced formic acid electrooxidation activity due to interfacial electronic reconstruction, which downshifted the Pd d-band centre, thereby promoting the indirect oxidation of HCOOH and facilitating CO* oxidation.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:
Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P.R. China.
Volatile organic compounds (VOCs) significantly impact air quality as photochemical smog precursors and health hazards. Catalytic oxidation is a leading VOC abatement method but suffers from catalyst deactivation due to metal sintering and competitive adsorption in complex mixtures. Strong metal-support interactions (SMSIs) provide atomic level control of interfacial electronic and geometric structures.
View Article and Find Full Text PDF