Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-marine-022123-104345DOI Listing

Publication Analysis

Top Keywords

marine
6
evolution assembly
4
assembly dynamics
4
dynamics marine
4
marine holobionts
4
holobionts holobiont
4
holobiont concept
4
concept multiple
4
multiple living
4
living beings
4

Similar Publications

Drones are becoming increasingly useful in their ability to observe wildlife. They have been especially useful in documenting marine animals such as sharks. Here we present novel aerial drone observations of a previously unknown dorsal-fin behaviour in white sharks (Carcharodon carcharias).

View Article and Find Full Text PDF

Karst water bodies are vital groundwater resources particularly vulnerable to pollution. Protecting their water quality requires documenting contaminants traditionally associated with anthropogenic activities (metals, nutrients, and fecal indicator bacteria) as well as emerging contaminants, such as antibiotic-resistant organisms (AROs) and perfluoroalkyl substances (PFAS). This study detected contaminants in karst-associated water bodies on the Yucatán Peninsula, including 10 sinkholes (cenotes) and one submarine groundwater discharge (SGD) site.

View Article and Find Full Text PDF

Communities of plasmids as strategies for antimicrobial resistance gene survival in wastewater treatment plant effluent.

NPJ Antimicrob Resist

September 2025

Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.

Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).

View Article and Find Full Text PDF

Petit-spot volcanism plays a critical role in the metasomatism of oceanic plates prior to subduction and in their recycling into the deep mantle. The extent of metasomatism depends on the number and volume of petit-spot volcanic edifices and intrusions, making precise identification of petit-spot volcanic fields essential. However, conventional methods based on seafloor topography and acoustic backscatter intensity alone have limitations in accurately delineating these features.

View Article and Find Full Text PDF

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF