Publications by authors named "Raul A Gonzalez-Pech"

The global rise of antimicrobial resistance has intensified efforts in bioprospecting, with researchers increasingly exploring unique marine environments for novel antimicrobials. In line with this trend, our study focused on bacteria isolated from the unique microbiome of crustose coralline algae (CCA), which has yet to be investigated for antimicrobial discovery. In the present work, bacteria were isolated from a CCA collected from Varadero Reef located in Cartagena Bay, Colombia.

View Article and Find Full Text PDF

Conservation genomics is a rapidly growing subdiscipline of conservation biology that uses genome-wide information to inform management of biodiversity at all levels. Such efforts typically focus on species or systems of conservation interest, but rarely consider associated microbes. At least three major approaches have been used to study how microorganisms broadly contribute to conservation areas: (1) diversity surveys map out microbial species distribution patterns in a variety of hosts, natural environments or regions; (2) functional surveys associate microbial communities with factors of interest, such as host health, symbiotic interactions, environmental characteristics, ecosystem processes, and biological invasions; and (3) manipulative experiments examine the response of changes to microbial communities or determine the functional roles of specific microbes within hosts or communities by adding, removing, or genetically modifying microbes.

View Article and Find Full Text PDF

Background: Cladocopium infistulum (Symbiodiniaceae) is a dinoflagellate specialized to live in symbiosis with western Pacific giant clams (Tridacnidae). Unlike coral-associated symbionts, which reside within the host cells, C. infistulum inhabits the extracellular spaces of the clam's digestive diverticula.

View Article and Find Full Text PDF

The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems.

View Article and Find Full Text PDF
Article Synopsis
  • Microeukaryotes, like the dinoflagellate family Symbiodiniaceae, show faster genetic and functional variations compared to physical traits, making it essential to analyze diversity across different biological levels for better evolutionary insights.
  • Despite advancements in genomics, inconsistent interpretations of genetic data among researchers hinder progress in understanding Symbiodiniaceae and their roles in marine ecosystems.
  • The article identifies challenges in evaluating genetic diversity at the species, population, and community levels, proposes accepted techniques, and emphasizes the need for collaboration to overcome unresolved issues and stimulate advancements in coral reef research.
View Article and Find Full Text PDF

Modern microbial taxonomy generally relies on the use of single marker genes or sets of concatenated genes to generate a framework for the delineation and classification of organisms at different taxonomic levels. However, given that DNA is the 'blueprint of life', and hence the ultimate arbiter of taxonomy, classification systems should attempt to use as much of the blueprint as possible to capture a comprehensive phylogenetic signal. Recent analysis of whole-genome sequences from coral reef symbionts (dinoflagellates of the family Symbiodiniaceae) and other microalgal groups has uncovered extensive divergence not recognised by current algal taxonomic approaches.

View Article and Find Full Text PDF
Article Synopsis
  • Inferring relationships among microbial genomes commonly uses multiple sequence alignment to create phylogenetic trees, a process that assumes full-length similarities between sequences.
  • This assumption is often violated due to events like genetic recombination, making traditional methods less effective.
  • The authors propose a scalable, alignment-free approach using short subsequences (k-mers) to analyze complete bacterial and archaeal genomes, which allows for more accurate representation of evolutionary relationships, including both vertical and lateral gene transfer.
View Article and Find Full Text PDF

Background: Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e.

View Article and Find Full Text PDF

Background: Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp.

View Article and Find Full Text PDF

Comparative algal genomics often relies on predicted genes from de novo assembled genomes. However, the artifacts introduced by different gene-prediction approaches, and their impact on comparative genomic analysis remain poorly understood. Here, using available genome data from six dinoflagellate species in the Symbiodiniaceae, we identified methodological biases in the published genes that were predicted using different approaches and putative contaminant sequences in the published genome assemblies.

View Article and Find Full Text PDF

Coral reefs are sustained by symbioses between corals and symbiodiniacean dinoflagellates. These symbioses vary in the extent of their permanence in and specificity to the host. Although dinoflagellates are primarily free-living, Symbiodiniaceae diversified mainly as symbiotic lineages.

View Article and Find Full Text PDF

Symbiosis between dinoflagellates of the genus and reef-building corals forms the trophic foundation of the world's coral reef ecosystems. Here we present the first draft genome of (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of (Clade F, strain CS-156: 1.

View Article and Find Full Text PDF

Symbiodinium is best-known as the photosynthetic symbiont of corals, but some clades are symbiotic in other organisms or include free-living forms. Identifying similarities and differences among these clades can help us understand their relationship with corals, and thereby inform on measures to manage coral reefs in a changing environment. Here, using sequences from 24 publicly available transcriptomes and genomes of Symbiodinium, we assessed 78,389 gene families in Symbiodinium clades and the immediate outgroup Polarella glacialis, and identified putative overrepresented functions in gene families that (1) distinguish Symbiodinium from other members of Order Suessiales, (2) are shared by all of the Symbiodinium clades for which we have data, and (3) based on available information, are specific to each clade.

View Article and Find Full Text PDF