Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is the most common form of dementia and a public health problem. It exhibits significant oxidative stress and redox alterations. The antioxidant enzyme systems defend the cellular environment from oxidative stress. One of the redox systems is the thioredoxin system (TS), which exerts decisive control over the cellular redox environment. We aimed to review the protective effects of TS, which include thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH. In the following, we discussed the physiological functioning and the role of the TS in maintaining the cellular redox-homeostasis in the AD-damaged brain. Trx protects the cellular environment from oxidative stress, while TrxR is crucial for the cellular detoxification of reactive oxygen species in the brain. However, TS dysregulation increases the susceptibility to cellular death. The changes in Trx and TrxR levels are significantly associated with AD progression. Though the data from human, animal, and cellular models support the neuroprotective role of TS in the brain of AD patients, the translational potential of these findings to clinical settings is not yet applied. This review summarizes the current knowledge on the emerging role of the TrxR-Trx system in AD.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-230394DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
thioredoxin system
8
cellular
8
cellular redox
8
alzheimer's disease
8
stress redox
8
cellular environment
8
environment oxidative
8
role
4
role thioredoxin
4

Similar Publications

Usnic acid, a compound from Usneae Filum, has shown notable antitumor effects. Nevertheless, the mechanism of its anti-NSCLC action remains incompletely elucidated. This study used metabolomics, network pharmacology, molecular docking, and dynamics simulation to investigate usnic acid's potential mechanism on NSCLC utilizing A549 cell samples.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.

View Article and Find Full Text PDF

Background: Anemia is common in hemodialysis patients, and iron supplementation is essential for its management. However, the impact of baseline inflammation on the efficacy of oral versus intravenous iron remains unclear.

Methods: This post hoc analysis of the IHOPE trial included 193 maintenance hemodialysis patients stratified by median baseline high-sensitivity C-reactive protein (hsCRP).

View Article and Find Full Text PDF

Background: Women are disproportionately affected by neuropsychiatric symptoms following recovery from acute COVID-19. However, whether there are central nervous system-specific changes in gene expression in women with neuropsychiatric Long COVID (NP-Long COVID) remains unknown.

Methods: Twenty-two women with and ten women without NP-Long COVID were enrolled from New Haven, CT, and the surrounding region and consented to a blood draw and large volume lumbar puncture.

View Article and Find Full Text PDF

Myocardial ischemia-reperfusion injury (MIRI) endures as a substantial impediment to the management of cardiovascular disease. The pathophysiology of MIRI is complex, involving oxidative stress, calcium overload, inflammation, and apoptosis. The NRG1/ErbB4 signaling pathway has been implicated in modulating oxidative stress responses in the heart, potentially reducing cellular damage caused by free radicals.

View Article and Find Full Text PDF