98%
921
2 minutes
20
The widespread secondary microplastics (MPs) in urban freshwater, originating from plastic wastes, have created a new habitat called plastisphere for microorganisms. The factors influencing the structure and ecological risks of the microbial community within the plastisphere are not yet fully understood. We conducted an in-site incubation experiment in an urban river, using MPs from garbage bags (GB), shopping bags (SB), and plastic bottles (PB). Bacterial communities in water and plastisphere incubated for 2 and 4 weeks were analyzed by 16S high-throughput sequencing. The results showed the bacterial composition of the plastisphere, especially the PB, exhibited enrichment of plastic-degrading and photoautotrophic taxa. Diversity declined in GB and PB but increased in SB plastisphere. Abundance analysis revealed distinct bacterial species that were enriched or depleted in each type of plastisphere. As the succession progressed, the differences in community structure was more pronounced, and the decline in the complexity of bacterial community within each plastisphere suggested increasing specialization. All the plastisphere exhibited elevated pathogenicity at the second or forth week, compared to bacterial communities related to natural particles. These findings highlighted the continually evolving plastisphere in urban rivers was influenced by the plastic substrates, and attention should be paid to fragile plastic wastes due to the rapidly increasing pathogenicity of the bacterial community attached to them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118710 | DOI Listing |
Mol Ecol
September 2025
State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.
Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFMol Syst Biol
September 2025
TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
Overflow metabolism refers to the widespread phenomenon of cells excreting metabolic by-products into their environment. Although overflow is observed in virtually all living organisms, it has been studied independently and given different names in different species. This review highlights emerging evidence that overflow metabolism is governed by common principles in prokaryotic and eukaryotic organisms.
View Article and Find Full Text PDFNPJ Antimicrob Resist
September 2025
Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.
Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).
View Article and Find Full Text PDF