Similar Publications

Understanding the genetic structure of wild ungulate populations is essential for informed conservation planning, particularly in ecologically sensitive and topographically complex landscapes such as the Himalayas. We investigated the genetic variation in Bharal (Pseudois nayaur) populations from the western (WH) and eastern Himalayas (EH) using eight microsatellite loci. Our analysis revealed significant genetic divergence between WH and EH populations, with a Nei's genetic distance of 0.

View Article and Find Full Text PDF

Understanding plant adaptive strategies that determine species distributions and ecological optima is crucial for predicting responses to global change drivers. While functional traits provide mechanistic insights into distribution patterns, the specific trait syndromes that best predict elevational optima, particularly in less-studied regions such as the Himalayas, remain unclear. This study employs a novel hierarchical framework integrating morphological, anatomical, and physiological traits to explain elevational distributions among 310 plant species across a 3,500-m gradient (2,650-6,150 m).

View Article and Find Full Text PDF

Effective conservation of threatened species depends on accurate scientific assessment of their occurrence and population status. This information is often lacking or has poor scientific reliability for low-density carnivores, such as snow leopards (Panthera uncia) that inhabit remote and challenging habitats. We address prevalent sampling and study design limitations and evaluate the population and distribution of snow leopards and their prey using a double sampling approach across the Trans-Himalayan Ladakh (~59,000 km2), India.

View Article and Find Full Text PDF

This study focuses on the geomorphological, morphological, and glacier lake dynamics around the Durung-Drung (DDG) and Pensilungpa (PG) glaciers in Zanskar Himalaya, Ladakh. It identifies evidence of five stages of glacier advancement through preserved lateral moraines, showcasing deglaciation by 21 phases of recessional moraines for DDG and 9 phases for PG. The paleo-extent of the moraines reaching ~ 8 and ~ 9 km for DDG and PG indicates a negative mass balance at present, suggesting similarities of the glacier advancement during the Last Glacial Maximum (LGM) and deglaciation after the LGM in the Himalaya and Tibet.

View Article and Find Full Text PDF

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF