Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo. SkMbs were cultured on a type-I-collagen scaffold with (co-culture) or without (monoculture) SVF. Large-scale muscle-like tissue showed an increase in the maturation index over time (49.18 ± 1.63% and 76.63 ± 1.22%, at 9 and 11 days, respectively) and a similar force of contraction in mono- (43.4 ± 2.28 µN) or co-cultured (47.6 ± 4.7 µN) tissues. Four weeks after implantation in subcutaneous pockets of nude rats, the vessel length density within the constructs was significantly higher in SVF co-cultured tissues (5.03 ± 0.29 mm/mm) compared to monocultured tissues (3.68 ± 0.32 mm/mm) ( < 0.005). Although no mature neuromuscular junctions were present, nerve-like structures were predominantly observed in the engineered tissues co-cultured with SVF cells. This study demonstrates that SVF cells can support both in vivo vascularization and innervation of contractile muscle-like tissues, making significant progress towards clinical translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376693PMC
http://dx.doi.org/10.3390/bioengineering10070800DOI Listing

Publication Analysis

Top Keywords

svf cells
12
vivo vascularization
8
vascularization innervation
8
tissues
6
svf
5
upscaled skeletal
4
skeletal muscle
4
muscle engineered
4
engineered tissue
4
tissue vivo
4

Similar Publications

KU4 inhibits adipocyte senescence in aged mice through necdin regulation of p53 activity.

Aging (Albany NY)

September 2025

Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea.

Previously, we reported that KU4 (LKU4) ameliorates diet-induced metabolic disorders by regulating adipose tissue (AT) physiology. Since metabolic disorders and age-related pathological conditions mutually exacerbate each other, this study hypothesizes that LKU4 may protect against adipose senescence during aging. Thus, this study demonstrates that LKU4 administration suppresses age-related metabolic dysfunction and aging phenotypes in AT of 24-month-old mice.

View Article and Find Full Text PDF

Adipocyte-specific IGF1R knockout activates the β-catenin/apelin axis to combat diet-induced obesity in male mice.

Diabetes Obes Metab

September 2025

Institute of Genome Engineered Animal Models for Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, China.

Aims: Obesity, driven by complex genetic and environmental interactions, remains a global health crisis with limited therapeutic options. The insulin-like growth factor 1 receptor (IGF1R) plays dual roles in metabolism and growth, but its tissue-specific functions in adipose biology are controversial. This study investigates how adipose-specific IGF1R knockout impacts systemic metabolism under high-fat diet (HFD) stress and explores the underlying mechanisms.

View Article and Find Full Text PDF

Adipose-derived cellular therapies, including stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs), have demonstrated increasing therapeutic potential across regenerative medicine applications. This narrative review examines the current evidence supporting the use of SVF and ASCs in 2 primary clinical contexts: osteoarthritis (OA) and chronic wound healing. SVF, a heterogeneous cell population isolated from lipoaspirated fat via enzymatic or mechanical methods, and ASCs, a more homogeneous culture-expanded mesenchymal cell product, both exert regenerative effects through angiogenic, immunomodulatory, and reparative mechanisms.

View Article and Find Full Text PDF

Lipofilling has far more applications than cosmetic surgery alone. Due to its high content of stromal vascular fraction (SVF) cells, lipoaspirate can also be used to treat wounds, as its cellular components may accelerate wound healing. Using our CELT protocol, we can increase the number of SVF cells per volume.

View Article and Find Full Text PDF

Skin aging leads to changes such as dyschromia, rhytids, dermal atrophy, and reduced elasticity. Adipose-derived cell therapies (ADCTs), including stromal vascular fraction (SVF), adipose-derived stem cells (ADSCs), and adipose-derived mesenchymal stem cells (AD-MSCs), have gained attention for their regenerative potential. In this systematic review, the authors aim to evaluate the effectiveness of ADCT in improving skin quality such as elasticity, texture, pigmentation, and rhytid reduction.

View Article and Find Full Text PDF