Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chestnut shells (CSs) are an appealing source of bioactive molecules, and constitute a popular research topic. This study explores the effects of in vitro gastrointestinal digestion and intestinal permeability on the bioaccessibility and bioactivity of polyphenols from CS extract prepared by subcritical water extraction (SWE). The results unveiled higher phenolic concentrations retained after gastric and intestinal digestion. The bioaccessibility and antioxidant/antiradical properties were enhanced in the following order: oral < gastric ≤ intestinal digests, attaining 40% of the maximum bioaccessibility. Ellagic acid was the main polyphenol in the digested and undigested extract, while pyrogallol-protocatechuic acid derivative was only quantified in the digests. The CS extract revealed potential mild hypoglycemic (<25%) and neuroprotective (<75%) properties before and after in vitro digestion, along with upmodulating the antioxidant enzymes' activities and downregulating the lipid peroxidation. The intestinal permeation of ellagic acid achieved 22.89% after 240 min. This study highlighted the efficacy of the CS extract on the delivery of polyphenols, sustaining its promising use as nutraceutical ingredient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376477PMC
http://dx.doi.org/10.3390/antiox12071414DOI Listing

Publication Analysis

Top Keywords

gastrointestinal digestion
8
extract prepared
8
prepared subcritical
8
subcritical water
8
water extraction
8
bioaccessibility bioactivity
8
intestinal permeability
8
simulated gastrointestinal
4
digestion chestnut
4
chestnut mill
4

Similar Publications

Mouse intestine as a useful model for CFTR electrophysiology function analysis.

Methods Cell Biol

September 2025

Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy.

Cystic fibrosis (CF) is a genetic disorder primarily known for its severe impact on lung function, but it also significantly affects the digestive system, leading to complications such as intestinal blockages, malabsorption, inflammation, and microbial dysbiosis. The study of CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) effects on intestinal physiology is critical for developing new effective treatments. This work highlights the use of the mouse intestine as a valuable model for analyzing cellular electrophysiology and CFTR function.

View Article and Find Full Text PDF

Reducing allergenicity of Trachinotus ovatus parvalbumin: Insights into digestibility and IgE-binding ability after dense phase CO₂ treatment.

Int J Biol Macromol

September 2025

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Labo

Parvalbumin (PV), a thermostable and digestion-resistant fish allergen, has been shown to retain its allergenic potential following traditional treatments, thus posing a persistent allergic risk. The study investigated the digestive kinetics and IgE immunoreactivity of Trachinotus ovatus PV, a major fish allergen, under different treatments (untreated; DPCD treatment-15 MPa, 30 min, 50 °C; heat treatment), to evaluate its allergenic potential alterations. The analysis was conducted using a combination of techniques to assess the proteolytic stability and IgE-binding capacity of PV, including Tris-Tricine-SDS-PAGE, Western blot (WB), indirect enzyme-linked immunosorbent assay (ELISA), and free amino group quantification.

View Article and Find Full Text PDF

Effectiveness and Safety of Orodispersible Budesonide for Eosinophilic Esophagitis: A Multicenter Real-World Study.

Clin Gastroenterol Hepatol

September 2025

Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Gastroenterology Unit, Azienda Ospedale Università Padova, Padua, Italy. Electronic address:

Background And Aims: Topical corticosteroids represent one of the effective first-line treatment options for EoE, and therapy with budesonide orodispersible tablets (BOTs) has been recently approved for the treatment of EoE and showed great efficacy in randomized-controlled clinical trials, however real-life data is lacking. Thus, we aimed to evaluate the effectiveness of treatment with BOTs in adult EoE patients in a real-life setting.

Methods: In this prospective study, clinical, histologic, endoscopic, and safety measures were assessed.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) represent a paradigm shift and a therapeutic revolution in the management of mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) colorectal cancer (CRC), and therefore for patients with Lynch syndrome (LS). The risk of developing metachronous cancers and colorectal polyps in a population of LS patients treated with ICI(s) is not well understood.

Materials And Methods: In a single-center cohort study, we retrospectively reviewed 93 LS patients from the prospective 'ImmunoMSI' cohort, who were diagnosed with dMMR/MSI-H gastrointestinal cancer and were treated with ICIs for index metastatic gastrointestinal cancer between February 2015 and April 2024.

View Article and Find Full Text PDF

Protein Deamidation Reduced Digestive Resistance and Amyloid Antigenicity of Soy Proteins via Depolymerization.

J Agric Food Chem

September 2025

Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.

Soy protein remains a key component of plant-based food development, but its application is challenged by inherent allergenicity. Previous work identified that native amyloid-like protein aggregates in soy 7S globulin that resist gastrointestinal digestion and exhibit pronounced antigenicity. Herein, we demonstrate that protein deamidation significantly enhances proteolysis under an infant gastrointestinal digestion model, leading to ∼80 and 50% reductions in IgG- and IgE-binding capacities, respectively.

View Article and Find Full Text PDF