98%
921
2 minutes
20
Shanghai, one of China's largest metropolises, faces significant environmental pollution challenges due to rapid economic development. Suburban areas of Shanghai are affected by both long-distance transport and local sources of pollutants. This study conducted an integrated analysis that links health-risk assessment of heavy metals and source apportionment of atmospheric constituents to distinguish the contributions of emission sources and the major sources of health risks. Source-apportionment analysis revealed that secondary sources had the greatest contribution to the local pollutants, indicating the significant influence of peripheral and long-distance transport. Health-risk assessment of Cr, Ni, As, and Cd revealed that local residents were exposed to respiratory health risks, in which Cr is the major contributor. This health risk was primarily associated with emissions from nearby industry-related sources. Our study highlights the significant effects of both long-distance transport and local source emissions on atmospheric composition and human health in large urban agglomerations. The findings can inform future efforts to develop more precise emission-reduction strategies and policy improvements to mitigate environmental pollution and protect public health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383545 | PMC |
http://dx.doi.org/10.3390/toxics11070552 | DOI Listing |
ASAIO J
September 2025
From Airlec Medical, Mérignac, France.
Long-distance aeromedical transport of critically ill patients is an increasingly important component of modern intensive care. However, the combination of veno-arterial extracorporeal membrane oxygenation (VA ECMO) and renal replacement therapy (RRT) during an intercontinental flight had never been previously documented. This case report describes the first known case of a 27 year old patient with fulminant viral myocarditis and multi-organ failure who was successfully repatriated from Bangkok (Thailand) to Paris (France) while receiving both VA ECMO and 6 hours of in-flight sustained low-efficiency dialysis (SLED).
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Botany, University of Wisconsin-Madison, Madison, WI, United States.
Introduction: The local perception of a stimulus such as wounding can trigger plant-wide responses through the propagation of systemic signals including the vascular transport of diverse chemical messengers, the propagation of electrical changes, and even potentially hydraulic waves that rapidly spread throughout the plant body. These systemic signals trigger changes in second messengers such as Ca2+ that then play roles in triggering subsequent molecular responses. Although the glutamate receptor-like (GLR) channels GLR3.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
N, as plants' most essential nutrient, profoundly shapes root system architecture (RSA), with LRs being preferentially regulated. This review synthesizes the intricate molecular mechanisms underpinning N sensing, signaling, and its integration into developmental pathways governing LR initiation, primordium formation, emergence, and elongation. We delve deeply into the roles of specific transporters (NRT1.
View Article and Find Full Text PDFACS Nano
August 2025
Electrical and Computer Engineering Department, University of Michigan; Ann Arbor, Michigan 48109-2122, United States.
The efficiency of most electronic devices is limited by scattering and capacitive losses among purely electronic processes. Charge-neutral excitons could reduce both losses and, thus, offer more efficient switching pathways. However, it remains challenging to achieve exciton transport that is fast, guided, and unidirectional enough for gating processes.
View Article and Find Full Text PDFNat Commun
August 2025
State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
Charge-transfer (CT) states with long transport distances are highly desired for promoting the performance of organic optoelectronic devices in photoconversion and electroluminescence. However, due to the limited lifetime and small diffusivity, only nanoscale CT transport has been observed so far. Herein, taking a binary CT cocrystal (trans-1,2-diphenylethylene-1,2,4,5-tetracyanobenzene, named as T-T) with efficient thermally activated delayed fluorescence (TADF) as a model material, we report the direct observation of long-distance CT exciton transport by using modified time-resolved and photoluminescence-scanned imaging microscopy, which reveals a triplet-assisted CT transport mechanism.
View Article and Find Full Text PDF