98%
921
2 minutes
20
Earthworms have entirely soft bodies mainly composed of circular and longitudinal muscle bundles but can handle the complexity of unstructured environments with exceptional multifunctionality. Soft robots are naturally appropriate for mimicking soft animal structures thanks to their inherent compliance. Here, we explore the new possibility of using this compliance to coordinate the actuation movements of single-type soft actuators for not only high adaptability but the simultaneous multifunctionality of soft robots. A cross-linked actuator coordination mechanism is proposed and explained with a novel conceptual design of a cross-linked network, characterization of modular coordinated kinematics, and a modular control strategy for multiple functions. We model and analyze the motion patterns for these functions, including grabbing, manipulation, and locomotion. This further enables the combination of simultaneous multi-functions with this very simple actuator network structure. In this way, a soft modular robot is developed with demonstrations of a novel continuous-transportation mode, for which multiple objects could be simultaneously transported in unstructured environments with either mobile manipulation or pick-and-place operation. A comprehensive workflow is presented to elaborate the cross-linked actuator coordination concept, analytical modeling, modular control strategy, experimental validation, and multi-functional applications. Our understanding of actuator coordination inspires new soft robotic designs for wider robotic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372032 | PMC |
http://dx.doi.org/10.1038/s41598-023-39109-2 | DOI Listing |
Chem Rev
September 2025
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, South Korea.
Self-regulating hydrogels represent the next generation in the development of soft materials with active, adaptive, autonomous, and intelligent behavior inspired by sophisticated biological systems. Nature provides exemplary demonstrations of such self-regulating behaviors, including muscle tissue's precise biochemical and mechanical feedback mechanisms, and coordinated cellular chemotaxis driven by dynamic biochemical signaling. Building upon these natural examples, self-regulating hydrogels are capable of spontaneously modulating their structural and functional states through integrated negative feedback loops.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2025
Cable-driven ankle exoskeletons are primarily designed to assist plantarflexion, but their actuation cables also span the subtalar joint, potentially producing unintended inversion-eversion torques. These unintended torques can affect frontal-plane kinematics, joint coordination, gait stability, and assistance efficiency. This study investigated how the ankle complex responds to multidimensional assistance torques during walking.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
Engineering guest-responsive materials capable of controlled and precise sorption behavior and structural deformation in response to external stimuli is imperative for various applications. However, existing systems often exhibit complex, unpredictable dynamics, posing challenges for efficient control and utilization. Here, we design crystalline metal-peptide frameworks with tunable water-responsive (WR) dynamics by assembling glycine-threonine (Gly-Thr, GT) or glycine-serine (Gly-Ser, GS) peptides with zinc (Zn) ions, achieving either continuous or discrete threshold water-sorption-dependent phase transitions.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
Contemporary visual assistive devices often lack immersive user experience due to passive control systems. This study introduces a neuronally controlled visual assistive device (NCVAD) that aims to assist visually impaired users in performing reach tasks with active, intuitive control. The developed NCVAD integrates computer vision, electroencephalogram (EEG) signal processing, and robotic manipulation to facilitate object detection, selection, and assistive guidance.
View Article and Find Full Text PDFAdv Mater
August 2025
Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Coordination bonding is a crucial interaction between heteromaterials that enhances both mechanical toughness and stretchability, with mussels serving as a natural example of thriving in harsh marine environments due to this interaction. However, stretchable electronic materials based on this fundamental interaction have been rarely reported. In this study, a stretchable electrode, called the metal-amine coordination-complex-based electrode (MACE) is introduced, which involves the formation of coordination complexes between a solid metal and an organic layer.
View Article and Find Full Text PDF