Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cichlid fishes are textbook examples of explosive speciation and adaptive radiation, providing a great opportunity to understand how the genomic substrate yields extraordinary species diversity. Recently, we performed comparative genomic analyses of three Lake Victoria cichlids to reveal the genomic substrates underlying their rapid speciation and adaptation. We found that long divergent haplotypes derived from large-scale standing genetic variation, which originated before the adaptive radiation of Lake Victoria cichlids, may have contributed to their rapid diversification. In addition, the present study on genomic data from other East African cichlids suggested the reuse of alleles that may have originated in the ancestral lineages of Lake Tanganyika cichlids during cichlid evolution. Therefore, our results highlight that the primary factor that could drive repeated adaptive radiation across East African cichlids was allelic reuse from standing genetic variation to adapt to their own specific environment. In this report, we summarize the main results and discuss the evolutionary mechanisms of cichlids, based on our latest findings.

Download full-text PDF

Source
http://dx.doi.org/10.1266/ggs.23-00024DOI Listing

Publication Analysis

Top Keywords

adaptive radiation
16
standing genetic
12
genetic variation
12
lake victoria
12
victoria cichlids
12
radiation lake
8
cichlids cichlid
8
east african
8
african cichlids
8
cichlids
7

Similar Publications

Background: Local control strategies in pediatric oncology are guided by disease-specific considerations. Effective communication of the goals of surgical procedure and associated intraoperative events plays a crucial role in shaping subsequent treatment decisions. However, accurately and comprehensively documenting these findings remains challenging, with considerable variability across different tumor types.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations.

Int J Radiat Oncol Biol Phys

September 2025

Radiation Oncology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143. Electronic address:

Purpose: Accelerating MR acquisition is essential for image guided therapeutic applications. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize. Convolutional neural networks (CNNs)/Transformers-based deep learning (DL) methods emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition.

View Article and Find Full Text PDF

Purpose: This study aims to cross-culturally validate the Dutch version of the Lymphedema Symptom Intensity and Distress Survey-Head and Neck version 2.0 (LSIDS-H&N v2.0).

View Article and Find Full Text PDF

Radiotherapy, a pivotal treatment for colorectal cancer, is compromised by tumor repopulation, which is characterized by accelerated growth and increased treatment resistance. Although radiation-induced DNA breaks eliminate most cells, a subset of polyploid giant cancer cells (PGCCs) evade death through massive genomic amplification, subsequently undergoing depolyploidization via a viral budding-like process to generate proliferative progeny. Critically, these PGCCs drive tumor repopulation and underpin therapeutic failure.

View Article and Find Full Text PDF