Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Investigations of cerebrospinal fluid (CSF) flow aberrations in Huntington's disease (HD) are of growing interest, as impaired CSF flow may contribute to mutant Huntington retention and observed heterogeneous responsiveness to intrathecally administered therapies.

Method: We assessed net cerebral aqueduct CSF flow and velocity in 29 HD participants (17 premanifest and 12 manifest) and 51 age- and sex matched non-HD control participants using 3-Tesla magnetic resonance imaging methods. Regression models were applied to test hypotheses regarding: (i) net CSF flow and cohort, (ii) net CSF flow and disease severity (CAP-score), and (iii) CSF volume after correcting for age and sex.

Results: Group-wise analyses support a decrease in net CSF flow in HD (mean 0.14 ± 0.27 mL/min) relative to control (mean 0.32 ± 0.20 mL/min) participants (p = 0.02), with lowest flow in the manifest HD cohort (mean 0.04 ± 0.25 mL/min). This finding was explained by hyperdynamic CSF movement, manifesting as higher caudal systolic CSF flow velocity and higher diastolic cranial CSF flow velocity across the cardiac cycle, in HD (caudal flow: 0.17 ± 0.07 mL/s, cranial flow: 0.14 ± 0.08 mL/s) compared to control (caudal flow: 0.13 ± 0.06 mL/s, cranial flow: 0.11 ± 0.04 mL/s) participants. A positive correlation between cranial diastolic flow and disease severity was observed (p = 0.02).

Interpretations: Findings support aqueductal CSF flow dynamics changing with disease severity in HD. These accelerated changes are consistent with changes observed over the typical adult lifespan, and may have relevance to mutant Huntington retention and intrathecally administered therapeutics responsiveness. ANN NEUROL 2023;94:885-894.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615133PMC
http://dx.doi.org/10.1002/ana.26749DOI Listing

Publication Analysis

Top Keywords

csf flow
36
flow
16
flow velocity
12
net csf
12
disease severity
12
csf
11
cerebrospinal fluid
8
huntington's disease
8
mutant huntington
8
huntington retention
8

Similar Publications

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

The glymphatic system (GS) is a newly discovered brain anatomy. Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial fluid (ISF) and cerebrospinal fluid (CSF). GS occurs through a normal exchange within perivascular space (PVS), facilitating the elimination of metabolic wastes generated by nerve cells from the brain.

View Article and Find Full Text PDF

Central nervous system (CNS) involvement in acute lymphoblastic leukemia (ALL) is associated with a poor prognosis, making its accurate detection vital for treatment planning. This systematic review critically examines the role of conventional cytomorphology (CC) and multiparameter flow cytometry (FC) in analyzing cerebrospinal fluid in acute lymphoblastic leukemia cases. While CC remains the gold standard, its sensitivity is limited, particularly in cases with low cell counts.

View Article and Find Full Text PDF

Focused Ultrasound (FUS) is the concentration of acoustic energy into a small region to produce therapeutic bioeffects. FUS-induced blood-brain barrier opening (BBBO), a strategy to deliver drugs and genes to the brain, also enhances glymphatic drainage, the brain-specific waste clearance system. Thus, FUS BBBO is a promising strategy for addressing the accumulation of neurotoxic solutes that are characteristic of many neurodegenerative diseases.

View Article and Find Full Text PDF

Purpose: Diffusion-weighted imaging (DWI) and intravoxel incoherent motion (IVIM) imaging are well-established approaches for evaluating cerebrospinal fluid (CSF) flow in subarachnoid and perivascular spaces, and have recently been applied to study ventricular CSF flow. However, DWI does not directly measure flow velocity, and the physical implications of DWI measurements are unclear. This study aimed to provide a theoretical interpretation of the DWI and IVIM imaging of CSF flow velocity fields.

View Article and Find Full Text PDF