Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The North China Plain (NCP) has experienced increasingly severe groundwater nitrogen (TN) pollution. However, the factors influencing TN distribution are still poorly understood. Previous studies have identified surface soil nitrogen (TSN) loading and intrinsic groundwater vulnerability (Inv) as the main factors controlling groundwater TN pollution. However, in this study, based on 3245 shallow groundwater samples in the NCP, the multiple regression analysis results(R=0.105, p<0.001) revealed that the TN was not mainly controlled by TSN and Inv. The lower prediction accuracy indicated the large data dispersion of TN, which might be affected by nitrogen attenuation or accumulation. Thus, the NCP was divided into balance, attenuation, and accumulation zones according to the regression equation. The attenuation zone was mainly distributed in the inter-fan and fan edge parts of the pre-mountain alluvial floodplain, as well as the west and south of the runoff area, while the accumulation zone was mainly distributed in the top part of the pre-mountain alluvial floodplain and the east of discharge area. Multi-indicators comparative analysis showed that compared to the balance (Eh= 76.2 mV) and accumulation (Eh=126.7 mV) zones, the attenuation zone has a stronger reducing environment (Eh=30.8 mV) favorable to denitrification, which can reduce the TN pollution (0.49 mg/L) caused by surface nitrogen input and consume more electron donors. Conversely, the stronger oxidizing environment in the accumulation zone limited denitrification, resulting in higher TN concentrations (19.14 mg/L) in the aquifers under the same TSN and Inv conditions as the other two zones. The standardized effects and significance on each path of the structural equation model (SEMs) fully confirmed the reliability of the above zonal analysis. Importantly, the feature importance (23.6%) of random forest and standardized effects (0.455, p<0.001) of SEMs showed that the Eh had the strongest influence on TN. Thus, the redox conditions of the aquifer, in addition to TSN and Inv, played a crucial role in controlling the TN pollution in the groundwater of a large region. The zoning work and the analysis of influencing factors are important to guide scientific prevention and control of groundwater nitrogen pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120346DOI Listing

Publication Analysis

Top Keywords

soil nitrogen
8
shallow groundwater
8
groundwater nitrogen
8
nitrogen pollution
8
north china
8
china plain
8
groundwater
5
genesis soil
4
nitrogen
4
nitrogen loading
4

Similar Publications

Rising atmospheric CO exposes plants to high-CO environments, while excessive nitrogen fertilizer use degrades soil, highlighting the need to reduce nitrogen input and cultivate vigorous cucumber seedlings under HC-LN conditions. Calcineurin B-like proteins (CBLs) sense calcium signals and regulate carbon/nitrogen metabolism via CBL-interacting protein kinases (CIPKs), though their roles in cucumber under HC-LN conditions are unclear. Here, we identified seven and 19 genes.

View Article and Find Full Text PDF

Silica nanoparticles (SiONPs), as emerging foliar nanofertilizers, demonstrate promising potential in agriculture. However, whether foliar application of SiONPs alters belowground soil metabolites and microbe composition and abundance remains largely unknown. In this study, 3-week-old cucumber plants were foliar-sprayed with fumed or Stöber SiO NPs dosing at -4 mg of NPs per plant for 5 days.

View Article and Find Full Text PDF

Structure and function of the topsoil microbiome in Chinese terrestrial ecosystems.

Front Microbiol

August 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.

While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi enhance nitrate ammonification in hyphosphere soil.

New Phytol

September 2025

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.

Microbial nitrate ammonification is a crucial process to retain nitrogen (N) in soils, thereby reducing N loss. Nitrate ammonification has been studied in enrichment and axenic bacterial cultures but so far has been merely ignored in environmental studies. In particular, the capability of arbuscular mycorrhizal fungi (AMF) to regulate nitrate ammonification has not yet been explored.

View Article and Find Full Text PDF

Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.

View Article and Find Full Text PDF