98%
921
2 minutes
20
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi-subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)-containing SWI/SNF complexes in plants. Here, we show that the Arabidopsis thaliana Leaf and Flower Related (LFR) is a subunit of SYD-containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD, in vitro and in vivo. Phenotypic analyses of lfr-2 mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co-regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription of AGAMOUS (AG), a C-class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on the AG locus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop at AG locus is negatively correlated with the AG expression level, and LFR-SYD was functional to demolish the AG chromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD-SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16385 | DOI Listing |
Anim Sci J
September 2025
Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
The aims of this study were to investigate the effects of re-vitrification at the pronuclear (PN) stage of porcine embryos generated from vitrified oocytes on subsequent development and to clarify if re-vitrification is more feasible at the PN stage or at the blastocyst stage. Immature porcine oocytes at the germinal vesicle (GV) stage were vitrified/warmed and subjected to in vitro maturation, parthenogenetic activation (PA), and embryo culture. Subsequent parthenotes were either cultured without re-vitrification for 6 days (GV-vit group) or were re-vitrified 8 h after PA at the PN stage (GV-vit/PN-revit group), and after warming, cultured for 6 days.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.
Objective: To expand the clinical phenotype associated with MYRF mutations in disorders of sex development (DSDs).
Methods: We present a case of a 17-year-old patient with a female phenotype who presented with primary amenorrhea.
Results: The patient's external genitalia was entirely female in appearance, though there was no opening of vagina below the orifice of urethra.
Introduction: The SOX9 gene encodes a transcription factor that acts downstream of the Y-linked SRY gene and plays a pivotal role in fetal testis development. Duplication of SOX9 or its regulatory sequences is a known cause of testicular or ovotesticular disorder of sex development (DSD) in chromosomal females (XX DSD). Numerous reports have described canine XX DSD, characterized by virilization (e.
View Article and Find Full Text PDFRadiat Res
August 2025
Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, China.
High-energy neutron radiation (HENR) induces severe cellular and tissue damage, yet effective prophylactic agents remain limited. In this study, the TLR2/NOD2 co-agonist CL429 was evaluated for its radioprotective potential against 14.1 MeV neutron exposure.
View Article and Find Full Text PDFAnim Sci J
September 2025
Department of Animal Science, Bangladesh Agricultural University, Mymensingh, Bangladesh.
This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.
View Article and Find Full Text PDF