Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Toxic and major elements, such as As and Fe, in watersheds can significantly impact the surrounding water environment and ecosystem. Thus, in this study, we conducted an investigation into the origins and spatial distribution of typical toxic trace elements (As and Mn) and crustal major elements (Al, Fe, and Ti) in suspended particulate matter (SPM) across various glacial watersheds located at different elevations in the northeastern Tibetan Plateau (NETP) from June to July in 2017. The results revealed that the mean value of each element followed the order of abundance in the samples, with Al having the highest mean value at 21307 µg/L, followed by Fe at 13366 µg/L, Ti at 1520 µg/L, Mn at 245 µg/L, and As at 66.6 µg/L. Moreover, our study identified high content of these elements from the Dabanshan Snowpack, Laohugou Glacier No.12, and Yuzhufeng Glacier in the upper reaches of the basin, which were found to be 9.9, 10.2, and 19.4 times higher, respectively, than that of the upper reaches of the Heihe River. We found that As and Mn exhibited clear indications of anthropogenic influence on a local and regional scale. The calculated enrichment factor (EF) demonstrated a significant As enrichment (EF>100) in the Qiyi and Lenglongling Glaciers, possibly resulting in the release of upstream glacier melt and anthropogenic-derived As deposition. Our findings suggested that the upstream region was primarily linked to glacier meltwater discharge. In contrast, the middle and lower reaches of the basin exhibited a more pronounced influence from local human activities. Based on the findings, the water environment of the glacier watershed appears to be in good condition overall. However, the presence of elevated levels of As element in the water system can be traced back to both anthropogenic and natural factors. As a result, ensuring the safety of the water supply for nearby residents is a matter of utmost concern. This study provides a comprehensive examination of hydrochemical variations and the overall water environment of high-altitude glacier basins in the NETP, offering valuable insights into the topic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.115271DOI Listing

Publication Analysis

Top Keywords

water environment
12
toxic trace
8
trace elements
8
glacial watersheds
8
tibetan plateau
8
major elements
8
upper reaches
8
reaches basin
8
influence local
8
glacier
6

Similar Publications

Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF

Background: Underwater environments face challenges with image degradation due to light absorption and scattering, resulting in blurring, reduced contrast, and color distortion. This significantly impacts underwater exploration and environmental monitoring, necessitating advanced algorithms for effective enhancement.

Objectives: The study aims to develop an innovative underwater image enhancement algorithm that integrates physical models with deep learning to improve visual quality and surpass existing methods in performance metrics.

View Article and Find Full Text PDF

This study focuses on mineral groundwater in alpine regions and its sustainable exploitation. The Tongde basin on Tibetan Plateau was investigated to reveal the hydrochemistry and formation of mineral groundwater in alpine basins and its sustainable development under anthropogenic disturbances. The results show that groundwater there is characterized by enriched strontium, with concentrations in the range of 0.

View Article and Find Full Text PDF

The Tone River in Japan represents one of the southern limit distributions of chum salmon (Oncorhynchus keta) on the western side of the North Pacific, but the number of adult chum salmon observed here has declined dramatically since 2013 and reached zero in 2024. The factors behind the recent decline of the chum salmon population in the Tone River were investigated by using ocean reanalysis data and a 20-year particle-tracking simulation. Virtual chum salmon fry were released at the mouth of the Tone River in spring each year with six different swimming strategies to evaluate the effects of ocean currents on the population growth rate of salmon.

View Article and Find Full Text PDF