Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Past decades have witnessed a decrease in environmental biodiversity. We hypothesized a similar decrease in indigenous gut microbiota diversity, which may have contributed to the obesity epidemic.

Objective: To investigate the changes in the composition and function of the gut microbiota in pregnant women over a period of 20 years.

Study Design: Altogether 124 pregnant women (41 overweight and matched 83 normal weight) pregnant in 1997, 2007 or 2017 were included in the study. The gut microbiota composition was assessed from fecal samples obtained at 32 weeks of gestation by 16S rRNA gene sequencing. Fecal short chain fatty acid (SCFA) profiles were measured by gas chromatography mass spectrometry (GC-MS).

Results: Distinct gut microbiota profiles were detected in pregnant women from 1997, 2007 and 2017 (PERMANOVA Bray-Curtis R = 0.029,  = 0.001). The women pregnant in 1997 exhibited significantly higher microbiota richness and diversity as compared to those pregnant in 2007 and 2017. The total concentration of fecal SCFAs was significantly higher in the pregnant women in 1997 compared to those in 2007 and 2017. Significant differences in gut microbiota composition between normal weight and overweight women were manifest in 1997 but not in 2007 or 2017.

Conclusions: The decrease in intestinal microbiota richness and diversity over two decades occurred in parallel with the decline in biodiversity in our natural surroundings. It appears that the gut microbiota of pregnant women has changed over time to a composition typical for overweight individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361139PMC
http://dx.doi.org/10.1080/19490976.2023.2234656DOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
pregnant women
24
2007 2017
16
microbiota pregnant
12
1997 2007
12
microbiota
9
pregnant
9
women
8
normal weight
8
pregnant 1997
8

Similar Publications

Oligochitosan-Ameliorated Gut Microbiome and Metabolic Homeostasis in Hybrid Groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) Infected With Vibrio harveyi.

J Fish Dis

September 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong

Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Kefir grains offer numerous health benefits, including boosting the immune system, alleviating digestive issues, and enhancing antimicrobial activity. They are rich in beneficial probiotic bacteria that promote gut health and support a balanced intestinal microbiota. "Beta-lactoglobulin (β-lg), a well-known milk protein," is used to create nanofibril structures that can serve as scaffolds.

View Article and Find Full Text PDF

Background: The gut microbiota plays a vital role in various physiological processes, including metabolism. Fecal microbiota transplantation (FMT) involves transferring fecal matter from a healthy donor to rebalance a patient's intestinal dysbiosis. The impact of FMT on metabolic syndrome (MetS) is subject to debate.

View Article and Find Full Text PDF

Atherosclerosis (AS) is increasingly recognized as a disease influenced not only by lipid metabolism and inflammation but also by the gut microbiota and their bioactive metabolites. Isoquercitrin (ISO), a natural flavonoid with food-medicine homology, has shown promising antiatherosclerotic potential, yet its underlying mechanisms remain unclear. In this study, ISO administration significantly reduced plaque burden, improved lipid profiles, and restored gut microbial balance by enriching beneficial taxa, such as , , and .

View Article and Find Full Text PDF