98%
921
2 minutes
20
Real-time glucose monitoring conventionally involves non-bioresorbable semi-implantable glucose sensors, causing infection and pain during removal. Despite bioresorbable electronics serves as excellent alternatives, the bioresorbable sensor dissolves in aqueous environments with interferential biomolecules. Here, the theories to achieve stable electrode potential and accurate electrochemical detection using bioresorbable materials have been proposed, resulting in a fully printed bioresorbable electrochemical device. The adverse effect caused by material degradation has been overcome by a molybdenum-tungsten reference electrode that offers stable potential through galvanic-coupling and self-compensation modules. In vitro and in vivo glucose monitoring has been conducted for 7 and 5 days, respectively, followed by full degradation within 2 months. The device offers a glucose detection range of 0 to 25 millimolars and a sensitivity of 0.2458 microamperes per millimolar with anti-interference capability and biocompatibility, indicating the possibility of mass manufacturing high-performance bioresorbable electrochemical devices using printing and low-temperature water-sintering techniques. The mechanisms may be implemented developing more comprehensive bioresorbable sensors for chronic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10355816 | PMC |
http://dx.doi.org/10.1126/sciadv.adi3839 | DOI Listing |
Nanoscale Adv
August 2025
School of Engineering, Brown University Providence Rhode Island USA
Electrically conductive hydrogels are of interest as scaffolds for tissue engineering applications involving the growth, implantation, or attachment of electrically active cells. Such hydrogels should exhibit soft mechanics, tunable conductivity to match native tissue, biocompatibility, and biodegradability into non-toxic, clearable species. Common conductors based on metals or polymers can be challenged by insufficient biocompatibility or biodegradability.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Department of Medical Materials Science and Technology, Institute of Biomedical Engineering, University Hospital Tuebingen, 72076 Tübingen, Germany.
Biodegradable implants as bone fixations may present a safe alternative to traditional permanent implants, reducing the risk of infections, promoting bone healing, and eliminating the need for removal surgeries. Structural integrity is an important consideration when choosing an implant material. As a biodegradable implant is being resorbed, until the natural bone has regrown, the implant material needs to provide mechanical stability.
View Article and Find Full Text PDFNanotechnology
October 2024
Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy.
Materials (Basel)
January 2024
Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
Magnesium alloys are promising materials for bioresorbable implants that will improve patient life and reduce healthcare costs. However, their clinical use is prevented by the rapid degradation and corrosion of magnesium, which leads to a fast loss of mechanical strength and the formation of by-products that can trigger tissue inflammation. Here, a tannic acid coating is proposed to control the degradation of AZ31 and AZ91 alloys, starting from a previous study by the authors on AZ91.
View Article and Find Full Text PDFACS Appl Bio Mater
February 2024
Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069 Dresden, Germany.
Implant-related infections or inflammation are one of the main reasons for implant failure. Therefore, different concepts for prevention are needed, which strongly promote the development and validation of improved material designs. Besides modifying the implant surface by, for example, antibacterial coatings (also implying drugs) for deterring or eliminating harmful bacteria, it is a highly promising strategy to prevent such implant infections by antibacterial substrate materials.
View Article and Find Full Text PDF