Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA interference (RNAi) is arguably one of the more versatile mechanisms in cell biology, facilitating the fine regulation of gene expression and protection against mobile genomic elements, whilst also constituting a key aspect of induced plant immunity. More recently, the use of this mechanism to regulate gene expression in heterospecific partners - cross-kingdom RNAi (ckRNAi) - has been shown to form a critical part of bidirectional interactions between hosts and endosymbionts, regulating the interplay between microbial infection mechanisms and host immunity. Here, we review the current understanding of ckRNAi as it relates to interactions between plants and their pathogenic and mutualistic endosymbionts, with particular emphasis on evidence in support of ckRNAi in the arbuscular mycorrhizal symbiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952549PMC
http://dx.doi.org/10.1111/nph.19122DOI Listing

Publication Analysis

Top Keywords

rna interference
8
gene expression
8
perspective cross-kingdom
4
cross-kingdom rna
4
interference mutualistic
4
mutualistic symbioses
4
symbioses rna
4
interference rnai
4
rnai arguably
4
arguably versatile
4

Similar Publications

Aim: Hepatitis C virus (HCV) infection remains a global health concern. Although the World Health Organization (WHO) proposed a strategy to eliminate HCV by 2030, Japan faces challenges owing to limited access and insufficient support for high-risk populations. Previously, HCV diagnoses required a two-step process, delaying results and increasing costs.

View Article and Find Full Text PDF

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF

Bovine coronavirus Nsp14 protein promotes viral replication by degrading TRAF3 to inhibit interferon production.

Vet Microbiol

September 2025

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 200240, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou Unive

Bovine coronavirus (BCoV), a member of the Betacoronavirus genus, causes severe calf gastroenteritis and respiratory disease, resulting in a significant loss of livestock. Coronavirus non-structural protein 14 (nsp14) is involved in viral RNA replication and modification and subverts host immune regulatory pathways to facilitate immune evasion. In this study, we demonstrated that BCoV nsp14 mediates TNF receptor-associated factor 3 (TRAF3) degradation through the coordinated targeting of the ubiquitin-proteasome and autophagy-lysosomal pathways, thereby potentiating viral replication.

View Article and Find Full Text PDF

Ferric Reductase is a Key Factor in Regulating Iron Absorption by Blastocystis sp.

Acta Parasitol

September 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.

Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.

Methods: The location of Ferric reductase in Blastocystis sp.

View Article and Find Full Text PDF

Background: Existing research fails to address the complex nature of nonspecific chronic lower back pain (cLBP ) despite its detrimental effect on economic, societal, and medical expenditures.

Objectives: We developed a nurse-led, mobile-delivered self-management intervention-Problem-Solving Pain to Enhance Living Well (PROPEL-M)-and evaluated its usability, feasibility, and initial efficacy for South Korean adults with nonspecific cLBP.

Methods: This study was composed of two phases: (a) lab and field usability testing for a gamified mobile device application; and (b) a pilot study employing a one-arm pre-test and post-test design among adults aged 18-60 years with nonspecific cLBP.

View Article and Find Full Text PDF