98%
921
2 minutes
20
This study was focused on the effects of ovary acquisition season, embryo transfer season, and conditions of surrogate sows on cloning efficiency, with the objective of improving the production of cloned pigs. The statistical analysis documented that cloning efficiency was highest when ovary extraction and embryo transfer occurred in the spring, and lowest when such operations occurred in the autumn. This was evidenced by the higher number of recovered oocytes (3.2 ± 0.47 vs. 2.5 ± 0.51), rate of mature oocytes (57.4 ± 0.07% vs. 48.9 ± 0.06%), rate of developed cloned blastocysts (35.7 ± 0.12% vs. 34.4 ± 0.07%), pregnancy rate of surrogate sows (73.5% vs. 33.3%), delivery rate (67.6% vs. 16.7%), litter size (6.9 ± 2.3 vs. 2.3 ± 2.5), and the number of alive newborns (5.7 ± 2.2 vs. 1.3 ± 1.2). Cloning efficiency was little affected by the ovulatory status of the surrogate sow prior to embryo transfer. The length of pregnancy, the parity, and the length of labor of the surrogate sow significantly affected the efficiency of generating pigs cloned from somatic cells. Specifically, when length of pregnancy ranged from 111 to 117 days, surrogate sows with shorter gestation period had larger litter size (8.9 ± 2.8) and a higher number of stillbirths per litter (2.1 ± 2.0). Moreover, statistical analysis indicated that selecting sows with 2-4 parities as surrogates led to increased litter size (7.7 ± 3.0) and the number of alive newborns (6.4 ± 3.1). In comparison with naturally breeding sows, the surrogate sows spent more time giving birth and suffered higher rates of stillbirth. The data obtained in this study provide valuable insights for improving the production efficiency of somatic cell cloned pigs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/rda.14429 | DOI Listing |
Animals (Basel)
September 2024
Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China.
Recombination-activating genes (RAGs) play a crucial role in the V(D)J recombination process and the development of immune cells. The development of the immune system and its mechanisms in pigs exhibit greater similarity to those of humans compared to other animals, thus rendering pigs a valuable tool for biomedical research. In this study, we utilized CRISPR/Cas9 gene editing and somatic cell nuclear transfer technology to generate RAG2 knockout (KO) pigs.
View Article and Find Full Text PDFReprod Domest Anim
September 2023
Henan Province Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, China.
This study was focused on the effects of ovary acquisition season, embryo transfer season, and conditions of surrogate sows on cloning efficiency, with the objective of improving the production of cloned pigs. The statistical analysis documented that cloning efficiency was highest when ovary extraction and embryo transfer occurred in the spring, and lowest when such operations occurred in the autumn. This was evidenced by the higher number of recovered oocytes (3.
View Article and Find Full Text PDFMethods Mol Biol
April 2023
Department of Animal Sciences, School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany.
The generation of genetically engineered (GE) pigs for disease modeling and xenotransplantation has been massively facilitated by the discovery of the CRISPR/Cas9 system. For livestock, genome editing is a powerful tool when used in combination with either somatic cell nuclear transfer (SCNT) or microinjection (MI) into fertilized oocytes. To generate either knockout or knock-in animals using SCNT, genome editing is carried out in vitro.
View Article and Find Full Text PDFFront Genet
January 2023
USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States.
Most male pigs are surgically castrated to avoid puberty-derived boar taint and aggressiveness. However, this surgical intervention represents a welfare concern in swine production. Disrupting porcine is hypothesized to delay or abolish puberty by inducing variable hypogonadotropism and thus preventing the need for castration.
View Article and Find Full Text PDFYi Chuan
March 2021
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
Myostatin (MSTN) is a member of the transforming growth factor-β (TGF-β) family, and functions as an inhibitor of muscle growth. Disrupting the inhibitory effect of MSTN on growth can provide an effective way to increase the muscle yield of livestock and poultry. The cysteine knot motif of TGF-β can stabilize the structure of MSTN protein and plays an important regulatory role in the biological function of MSTN.
View Article and Find Full Text PDF