98%
921
2 minutes
20
Designing low-power and flexible artificial neural devices with artificial neural networks is a promising avenue for creating brain-computer interfaces (BCIs). Herein, we report the development of flexible In-Ga-Zn-N-O synaptic transistors (FISTs) that can simulate essential and advanced biological neural functions. These FISTs are optimized to achieve ultra-low power consumption under a super-low or even zero channel bias, making them suitable for wearable BCI applications. The effective tunability of synaptic behaviors promotes the realization of associative and non-associative learning, facilitating Covid-19 chest CT edge detection. Importantly, FISTs exhibit high tolerance to long-term exposure under an ambient environment and bending deformation, indicating their suitability for wearable BCI systems. We demonstrate that an array of FISTs can classify vision-evoked EEG signals with up to ∼87.9% and 94.8% recognition accuracy for EMNIST-Digits and MindBigdata, respectively. Thus, FISTs have enormous potential to significantly impact the development of various BCI techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh00759f | DOI Listing |
Mater Horiz
October 2023
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China.
Designing low-power and flexible artificial neural devices with artificial neural networks is a promising avenue for creating brain-computer interfaces (BCIs). Herein, we report the development of flexible In-Ga-Zn-N-O synaptic transistors (FISTs) that can simulate essential and advanced biological neural functions. These FISTs are optimized to achieve ultra-low power consumption under a super-low or even zero channel bias, making them suitable for wearable BCI applications.
View Article and Find Full Text PDF